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Introduction: In dynamic MRI, spatial and temporal parallelism are exploited to reduce scan time. Real-time reconstruction is sometimes necessary for timely
feedback during the scan. The commonly used view sharing techniques suffer from reduced temporal resolution and many of the more advanced reconstruction
methods, including the newly developed methods based on compressed sensing, are either retrospective or time-consuming, or both. The goal of this study is to use a
Kalman filter model suitable for real-time reconstruction to increase the temporal resolution in the dynamic MRI reconstruction. The original application of Kalman
filter to dynamic MRI was limited to non-Cartesian trajectories [1], because of an assumption made in the model to make the computation feasible. In this abstract we
overcome this limitation and apply the model to the more commonly used Cartesian trajectories. Furthermore, we combine the Kalman model with parallel imaging
techniques including SENSE and TGRAPPA to further increase the spatial and temporal resolution and SNR.

Theory: The basic Kalman filter model is given in Eq. 1, where the image X, and the corresponding undersampled k-space x, S+tw., w,.~N(,0,)
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measurement z, are vectors. However, the dimension of the vectors is a major obstacle in the implementation of this model, 2 =& ™Y Yy O.R)

because the relevant matrices are too large to directly compute. In [1], the diagonalization assumption of F, r F, is adopted to simplify the calculation into a

pixel-by-pixel process. This assumption is not valid for Cartesian trajectories, because the aliasing pattern is very conspicuous and the off-diagonal term is significant.
However, for 2D Cartesian imaging, undersampling only happens along the phase encoding direction; therefore, we can do a Fourier transform along the readout
direction first and apply the Kalman filter model along the phase encoding direction for each readout pixel to simplify the model into a 1D problem. With this
simplification, the direct implementation of Kalman filter becomes feasible with appropriate estimations of 0, R, and the initial conditions. For non-gated real-time

cardiac imaging, 0, and R, are assumed to be constant since the statistical properties for this dynamic process can be regarded as time-invariant; therefore, we can
pre-calculate the Kalman gain matrix K, for each step and the calculation required as the measurement proceeds is just matrix-vector multiplication and real-time

reconstruction is feasible.
If multiple receiver coils are available, we can easily combine the Kalman filter model with SENSE by incorporating coil sensitivity information into the model by
replacing F, with ES, and include data from all of the coils in the measurement vector. However, since it is difficult to accurately estimate coil sensitivity in

dynamic MRI, we also developed a combination of the Kalman filter model with TGRAPPA [2] by first filling the missing k-space lines with TGRAPPA for each coil.
We then used the resulting k-space dataas 7, and replaced F, with the fully sampled Fourier matrix. This method requires a modified measurement error covariance

matrix R, t0 reflect the fact that the k-space data estimated using TGRAPPA is not as reliable as the measured k-space data. Finally, the coil images are combined to
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performed by two experienced cardiologists to compare SW, SLAM, TGRAPPA, Figure 1. Images reconstructed using sliding window, SLAM, kt-FOCUSS
Kalman filter combined with SENSE (KF-SENSE), and Kalman filter combined and Kalman filter (top row) and the corresponding difference images
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Results: Figure 1 shows the images reconstructed using sliding window, SLAM,
kt-FOCUSS and Kalman filter, and the corresponding difference images with the fully sampled
image in a 2x single-coil simulation with a free-breathing non-gated cardiac image series. The
Kalman filter model gives a better reconstruction as the difference is reduced compared with
sliding window and SLAM. The appearance of the aliasing pattern is similar for these three
linear reconstructions, although the magnitude changes. The appearance of the aliasing pattern
in the regions near the arrows is substantially different for kt-FOCUSS, probably because it is
a nonlinear reconstruction. Figure 2 shows the statistical results from the blind review of 16
dynamic short-axis cardiac image sets with multiple coils. It is shown that the temporal
resolution for KF-SENSE and KF-TG are significantly improved (p<0.05) compared with the
sliding window (SW) and SLAM, and the spatial aliasing is reduced compared with TGRAPPA
alone. Comparing KF-SENSE with KF-TG, the former behaves slightly better in spatial
unaliasing and the latter behaves better (p<0.05) in temporal resolution. The reconstruction speed
for KF-TG is much higher than KF-SENSE, because the Kalman gain matrix in KF-TG can be
pre-calculated. All matrices are available before the measurement for KF-TG, but the dynamic
coil sensitivity in the KF-SENSE model cannot be pre-estimated.
Conclusions: In this abstract we have presented a Kalman filter model based reconstruction method for Cartesian trajectories that is suitable for real-time reconstruction
and maintains linearity in the reconstruction process. We also combined this model with SENSE and TGRAPPA to further increase the temporal and spatial resolution.
Superiority over SW and SLAM in temporal resolution and TGRAPPA in spatial unaliasing has been demonstrated by a blind review. The Kalman filter model is not
limited to cardiac MRI and can be easily extended, since the 1D simplification makes it straightforward to adapt the Kalman filter for dynamic MRI.
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get the final image series. This results in an effective combination of TGRAPPA ~_Sliding Window
with the Kalman filter.

Methods: To study the effects of the Kalman filter model in reconstruction of
undersampled data, we first conducted a series of simulations comparing dynamic
images reconstructed from subsampled k-space data to the original fully-sampled
images. We compared the following techniques: sliding window (SW), SLAM
(using a triangle window for interpolation between neighboring frames to fill the

unacquired k-space) [3], kt-FOCUSS [4] and Kalman filter. Also we performed
non-gated real-time cardiac imaging experiments with a 2D Cartesian bSSFP
sequence on a Siemens Avanto 1.5T scanner equipped with the 32-channel body

coil. A training scan of about 2.5s was required before data acquisition for the
parameter estimation. The total scan time was about 10s and the acceleration
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Figure 2. Temporal resolution and spatial unaliasing
ratings for short axis experiments (5 = best).
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