
CS-SENSE or Denoised SENSE: The Influence of Irregular Sampling in l1 Regularized SENSE Reconstruction 
Mariya Doneva1, Holger Eggers1, and Peter Börnert1 

1Philips Research Europe, Hamburg, Germany 
 

Introduction: 
Parallel imaging (PI) is a well established method for scan acceleration in MRI [1,2]. Since the introduction of SparseMRI [3] the combination of 
compressed sensing (CS) and PI has been of great interest to further accelerate MRI scans [4-7]. While CS exploits incoherent sampling and 
signal sparsity to solve an ill-posed inverse problem, sensitivity encoding (SENSE) uses the prior knowledge of coil sensitivities to solve an 
over-determined problem. However, the SENSE encoding matrix is usually ill-conditioned, which leads to noise amplification in the 
reconstructed images [1]. The conditioning of the encoding matrix decreases with increasing SENSE reduction factor limiting the achievable 
scan acceleration. To counteract the noise amplification in SENSE, regularization methods accounting for noise correlation and image support 
are used [8,9]. Inspired by the CS literature, ℓ1-regularization was also proposed to improve SENSE reconstruction [10,11]. In the case of regular 
undersampling, the ℓ1-regularization performs denoising and will be called ℓ1-denoised SENSE within this work.  
Both CS-SENSE and ℓ1-denoised SENSE can be formulated as an ℓ1-regularized least squares problem, the main difference being the incoherent 
sampling in CS-SENSE. The term ℓ1-regularized SENSE will be used here, generalizing for both regular and irregular sampling.  In this work, 
we investigate the influence of the sampling pattern on the convergence behaviour of ℓ1-regularized SENSE reconstruction at different reduction 
factors. In other words, we try to answer the question what improvement can CS-SENSE provide over ℓ1-denoised SENSE. 
Methods:  
3D brain data were acquired on a 1.5T clinical scanner (Philips Healthcare, Best, The Netherlands) using an 8 channel head coil and a TFE 
sequence (TE/TR=4.5/12.5, FOV=240x240x176mm3, 1mm isotropic voxel). The sensitivity maps and image support estimation were obtained 
from a standard low resolution SENSE reference scan. Full data sets were acquired and retrospectively undersampled. The following sampling 
patterns were considered for reduction factors of 4 and 9: 2D regular undersampling (reduction factors 2x2 and 3x3), uniform density Poisson 
disk (PD) sampling, and variable density PD sampling with high undersampling in the k-space periphery.   
Image reconstruction was performed using Nesterov's optimal gradient scheme [12] adapted to solve the optimization problem:  ݂ሺݔሻ = 	 ห|ܨ௨ܵݔ − หଶଶ|ݕ +  ௨ is the undersampledܨ ,is the measured data ݕ ,is the image to be reconstructed ݔ หଵ, where|ݔଶห|Ψߣ+			หଶଶ|ݔଵห|ܴିଵߣ
Fourier transform, ܵ is the coil sensitivity matrix, the operator  ܴିଵ selects the image regions not included the estimated image support, and Ψ	is 
a wavelet transform. In addition, 
standard regularized non-iterative 
SENSE reconstruction was 
performed on the regularly 
undersampled data. 
Results: 
Reconstruction results for different 
undersampling factors are shown 
in Fig.1. As expected, ℓ1-
regularization reduces the noise 
amplification compared to standard 
SENSE.  At a reduction factor of 4 
(Fig.1a), the ℓ1-regularized SENSE 
reconstruction converges to a 
solution with the same ℓ2 error for 
all considered sampling patterns. 
The convergence curves for regular 
sampling and uniform density PD 
sampling are very similar, while 
variable density PD sampling 
results in faster convergence.  
At a reduction factor of 9 (Fig.1b), 
regular undersampling results in 
severe noise amplification. Uni-
form density PD sampling leads to 
a reduced reconstruction error. 
Altogether 300 iterations were 
performed; however, there was no 
further improvement in the 
reconstruction error after about 100 
iterations for these two sampling 
patterns. Variable density PD 
sampling provides the best results 
both in convergence speed and 
image quality. 
Discussion and Conclusion: 
At low to moderate reduction 
factors, ℓ1-regularized SENSE is an overdetermined inverse problem. Irregular sampling results in more homogeneous noise amplification and 
faster convergence in case of the variable density sampling. However, the reconstruction converges to a solution with the same total 
reconstruction error for all sampling patterns. At high reduction factors, the reconstruction problem becomes ill-posed and CS theory applies. In 
this case, irregular sampling leads to a reduced reconstruction error. The improvement in the reconstruction error is especially noticeable for 
variable density sampling, because it better exploits the sparsity of the high frequency data. Variable density sampling also provides the best 
convergence rate, which is almost unchanged for different reduction factors.  
With respect to the achievable image quality and the small number of iterations needed, variable density incoherent sampling shows to be a 
promising candidate for clinical application of ℓ1-regularized SENSE reconstruction.  
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Fig.1. Convergence curves (top) and image reconstruction results (bottom) for (a) reduction factor 4 and (b)
reduction factor of 9. Top: Normalized RMS error with respect to the fully sampled image as a function of the
number of iterations is given for ℓ1-denoised SENSE and CS-SENSE with uniform and variable density Poisson disk
sampling. The reconstruction error of non-iterative SENSE is given for reference. Bottom: Reconstructed images
and difference images (with respect to the fully sampled image) after (a) 50 iterations (b) 300 iterations. 
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