
Figure 1 The basic principle of radial GROWL. (a) Undersampled radial
data with a fully sampled central k-space circle that can be used for
calibration. (b) A GROWL operator is calibrated for each radial direction,
allowing estimating data on lines parallel to the acquired radial line. (c)
The k-space coverage after applying GROWL operators.  

Figure 2 Monte Carlo simulation results for SENSE and GROWL. (a)
Reference image (256×256). (b) Individual coil image. (c) - (e) R=4 (64 
lines/views) reconstruction results using SENSE (c), GROWL without (d) 
and with k-space adaptive regularization (e). RMSE is shown in the upper 
left corner. (f) – (h) Corresponding g-factor maps. 
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Figure 3 In vivo 3D radial MP-RAGE brain scans. (a) Reference image 
(256×256). (b) – (c) R=8 (32 views) radial GROWL image with a fixed 
regularization (b) and k-space adaptive regularization (c). 
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Introduction 
When compared with conventional Cartesian acquisitions, non-Cartesian 

(e.g. radial and spiral) MRI methods provide advantages in ability to achieve 
higher temporal-resolution [1], ultra-short echo time [2] and reduction of motion 
artifacts [3]. Non-Cartesian parallel imaging methods provide the additional 
benefits of shorter scan time. Recently, a rapid self-calibrated non-Cartesian 
parallel imaging method, generalized GRAPPA Operator for Wider readout 
Lines (GROWL), has been developed and applied to both radial and spiral 
acquisitions [4,5]. In this work, it is demonstrated that parallel imaging with 
radial GROWL provides a SNR advantage vs. Cartesian SENSE, due to the 
ability to use coil sensitivity profiles along orthogonal directions and easy noise 
regularization. 
Methods 

The principle of radial GROWL is shown in Fig. 1. For an undersampled 
radial dataset, a set of GROWL operators are calibrated using fully sampled 
central k-space circle (Fig. 1a), allowing estimating data on lines parallel to 
acquired radial line (Fig. 1b) and therefore filling up the entire k-space (Fig. 1c). 
A k-space adaptive Tikhonov regularization strategy can be used to achieve an 
optimal balance between accurate data estimation and noise amplification [4,5].  

The G-factor maps for SENSE and GROWL reconstruction were evaluated 
in a Monte Carlo simulation [6]. A noise-free T1-weighted brain MR image 
(Fig.2a) was downloaded from a database (http://www.bic.mni.mcgill.ca/brainweb/). 
The complex sensitivity of a head coil with eight cylindrically spaced elements 
was computed using an analytic Biot-Savart integration (Fig.2b). The k-space 
data was generated with Fourier Transform and inverse regridding. In each of 100 
iterations of the Monte Carlo simulation, Gaussian distributed random noise was 
added to each channel, resulting in a noise standard deviation in the range of 
0.1% - 10.0% of the white matter signal intensity with a sum-of-square 
reconstruction for a fully sampled k-space. The g-factor map and root-mean 
square error (RMSE) were computed for SENSE and GROWL reconstruction. 

The performance of GROWL with k-space adaptive regularization [5] was 
further examined with an in vivo brain study. A healthy volunteer was scanned on 
a clinical 3.0T scanner (Achieva, Philips, the Netherlands) using an 8-channel 
head coil (Invivo, Gainesville). A 3D Cartesian Magnetization-Prepared Rapid 
Gradient Echo (MP-RAGE) sequence was modified into a hybrid radial 
acquisition by removing slice-encoding gradients, while rotating different 
encoding planes with a bit-reverse [8] angle ordering scheme. This allows the 
retrospective reconstruction of undersampled radial datasets with reduction 
factors R = 2, 4, 8. Scan parameters are FOV = 230×230×230 mm3, matrix size = 
256(readout) ×128(phase-encode) ×128(view planes), TR/TImin/TE= 2800/1000/8 
ms, total scan time = 6 mins. GROWL reconstructions were then applied to data 
retrospectively undersampled to R = 8 (effective total scan time = 1.5 mins). 
Results and Discussions 

Figure 2 shows Monte Carlo simulation results. With a reduction factor R=4, 
even without regularization, GROWL gives lower RMSE and g-factor values than 
SENSE. G-factor map reveals that such a SNR advantage is due to the fact that 
Cartesian SENSE does not exploit coils distributed along the frequency encode 
(vertical) direction. For GROWL, k-space adaptive regularization further reduces 
noise, resulting in a maximal g-factor of 0.24, consistent with prior observation 
that k-space-based parallel imaging method can result in g < 1 [6]. Figure 3 shows 
GROWL reconstruction with an R=8 using an 8-channel head coil. K-space 
adaptive regularization [5] (Fig. 3c) significantly reduces noise when compared 
using a fixed regularization factor throughout k-space [4] (Fig. 3b). The GROWL 
is a rapid parallel imaging method due to its non-iterative nature. After an initial 
self-calibration step taking about 10 seconds, it only takes 300 ms to reconstruct each 2D image with GROWL.  

A significant advantage of radial GROWL over Cartesian SENSE is that the regularization parameter for GROWL can be automatically determined from 
the noise level [4-5] without time-consuming parameter estimation [9] or iterative reconstruction [10]. In conclusion, radial parallel imaging with GROWL 
provides a SNR advantage vs. Cartesian SENSE, which will be particularly beneficial for applications requiring higher acceleration factors. 
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