

DCE-MRI using a three compartment Leaky Tracer Kinetic Model (LTKM) for whole body applications

Ram KS Rathore¹, Rakesh Kumar Gupta², Prativa Sahoo¹, Rishi Awasthi², Divya Rathore¹, and Bhaswati Roy²

¹Mathematics & Statistics, Indian Institute of Technology, Kanpur, Kanpur, Uttar Pradesh, India, ²Radiodiagnosis, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India, Lucknow, Uttar Pradesh, India

Introduction: In a recent DCE-MRI analysis of gliomas of different grades using two compartment generalized tracer kinetic model (GTKM) [1]-[3]

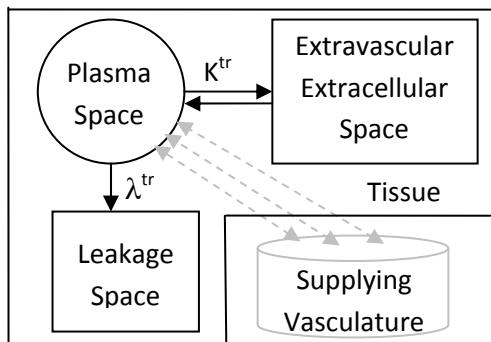


Figure 1: Three Compartment Leaky Tracer Kinetic Model (LTKM)

30ml saline flush. A series of 384 images in 32 time points for 12 slices were acquired (Temporal resolution: 6.03sec). The standard voxel wise precontrast tissue parameter T_{10} was calculated and used to converted the signal intensity time curve $S(t)$ to the concentration time curve($C(t)$) [3].

Theory: The leaked concentration $C_L(t)$ of contrast is governed by $dC_L(t)/dt = \lambda^{\text{trans}} C_p(t)$, $C_L(0) = 0$, where the rate constant λ^{trans} is the fraction of leaking plasma volume flow per unit time (i.e., minute⁻¹). incorporating which the leaky tracer kinetic model (LTKM) becomes (Fig. 1):

$$C(t) = C_{PS}(t) + C_{EES}(t) + C_L(t) = v_p C_p(t) + k^{\text{trans}} \int_0^t C_p(u) e^{-k_{ep}(t-u)} du + \lambda^{\text{tr}} \int_0^t C_p(u) du .$$

An implicit knowledge of the structure of $C_p(t)$ utilizing a separate measurement of the arterial input function (AIF) from a major volume supplying vasculature is very crucial here, i.e., a simultaneous determination of the parameters v_p , k^{trans} , k_{ep} as well as the function $C_p(t)$ from the equation is an ill-conditioned problem (e.g., the obviously funny solution v_p arbitrary and $C_p(t) = C(t)/v_p$). To our great relief, fortunately, the indicator dilution or the linear control theory, following [2], is applicable and we can estimate the vascular plasma concentration $C_p(t)$ at the tissue location by utilizing

$$C_p(t) = \int_0^T R(u) C_v(t-u) du , \int_0^T R(u) du = 1 ,$$

where T does not exceed the maximum bolus arrival time in the volume imaged, $R(u)$ denotes the tissue position dependent response function and $C_v(t)$ denotes the concentration of contrast in the supplying vasculature, known as the arterial input function (AIF).

The general applicability of the three compartment LTKM to the whole body follows from the premise that a tracer which does not permeate into the cells has to be confined to the vasculature, to the EES reciprocating to the vasculature, or to the non-reciprocal EES which must then be the leakage space. It must, further, be noted that if such a leakage space does not exist at a tissue location the fit ought to give an insignificant value to λ^{tr} . Conversely, a large λ^{tr} signifies a leakage, rupture or a kidney type function.

A discretization of the interval $[0, T]$ using three or four time points and the corresponding $R(u)$ values at them was found to be sufficient for our computational purposes where a determination of $C_v(t)$ followed [4]. The discretized $R(u)$ values and the parameters v_p , k^{trans} , k_{ep} and λ^{tr} get well determined by the least-squares fitting as the accompanying graphs of the fit show.

Results: The self explanatory graphs of fits and their components are shown in Fig. 2. The diverse results show the applicability of LTKM with obvious interpretations.

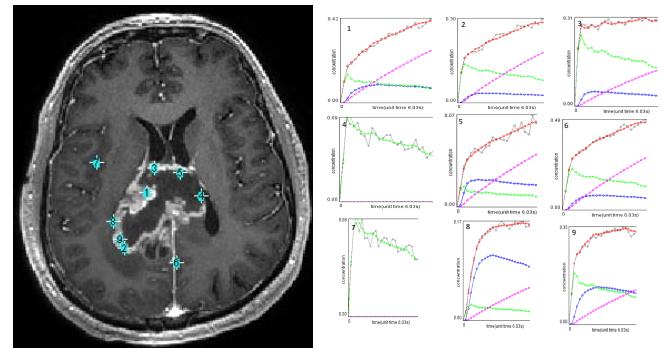
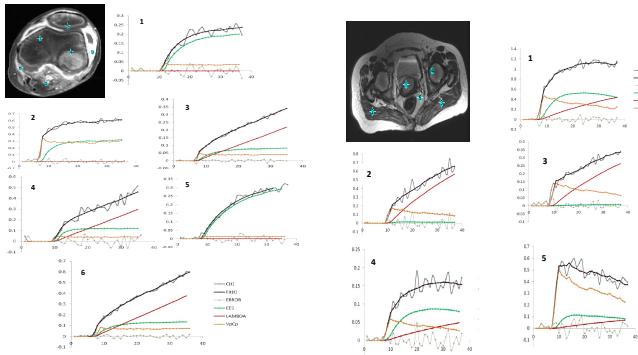



Figure 2: (i) Left panel graphs shows concentration time profile of different compartments at selected ROIs in knee, (ii) the middle panel that in pelvic imaging and (iii) the right panel corresponds to brain imaging. Note the presence of leakage in (i) 3, 4, 6, (ii) 1-5, & (iii) 1-3, 5-6, 8-9.

Conclusion: The three compartmental LTKM model seems to be a promising tool for estimating the perfusion parameters in the whole body DCE-MRI.

References: [1] Tofts et al. MRM.1991;17:375-67.[2] Ostergaard et al. MRM.1996;36:751-25.[3] Singh et al. JMRI.2009;29:166-76.[4] Singh et al. J Magn Reson Imaging.2007;26:871-80.[5] Rathore et al. ISMRM 2011(Abstract no:539).