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INTRODUCTION: Patients with colorectal cancer often have downstaging chemo/radiotherapy prior to clinicians deciding whether to recommend 
resection, further chemo/radiotherapy, or surveillance/palliative care.  A key factor in that decision is whether the patient is deemed to be a responder 
or non-responder to therapy.  In extreme cases, all too frequent in practice, complete responders are sent for surgery while non-responders are 
subjected to chemotherapy for too long. In order to quantitatively assess a patient's (non-)response to therapy, we have developed a Bayesian 
framework for simultaneous non-rigid motion correction (MC) and pharmacokinetic (PK) parameter estimation in dynamic contrast-enhanced 
MRI (dceMRI).  This enables comparison of the distributions of physiologically relevant parameters before and after therapy, and provides a 
mechanism for discriminating between responders and non-responders at an early stage during the treatment. 
METHODS: The aim is to estimate (a) the transformations that need to be applied to each image in the dataset to 
bring all images into alignment, and (b) the PK parameters that best explain the data.  

Similarity measure: Since traditional similarity 
measures are unable to deal with the time-varying 
contrast in dceMRI images, our algorithm is based on 
maximization of the joint log-posterior probability of 
the transformation and PK parameters, given the data and 
the known acquisition parameters. Like in most Bayesian 
similarity measures, two key factors lead to our similarity 
measure: (i) Image formation model: Assumes that the 
concentration of contrast agent (CCA) is a convolution 
between the Arterial Input Function (AIF) and the PK model. This implies that the MR 
intensity at each voxel can be expressed as a function of 2 PK-parameters. (ii) 
Deformation model: To ensure that the deformations being applied to each time-point 
image are smooth and invertible, we use the logDemons framework [1]. 
Generic framework: Our framework supports any PK model or AIF. In this 
implementation we have used the standard Tofts model [2] and experimented with two 
population-averaged AIFs: the Orton [3] and Weinmann [4] AIFs. 
Algorithm: For each dceMRI scan, we select an ROI containing the tumour (Fig. 1 
inset), and get an initial estimate of the two PK parameters at each voxel. Then we 
iteratively update the deformation vector (initialized zero) and the PK-parameters 
successively at each voxel so that the similarity measure is maximized. 
Experiments: We tested the algorithm on dceMRI scans (LAVA sequence with 
TR=4.5ms, TE=2.2ms, flip angle=12°, 50 volumes, 12 sec/volume, voxel size=1x1x2 
mm3) obtained for 8 patients before and after 5 cycles of chemoradiotherapy. The 
probability distribution function (PDF) of the PK-parameter Ktrans was determined for 
each scan using Orton/Weinmann AIF, and with/without motion-correction (MC). For 
each patient, we then calculated the Kolmogorov-Smirnov (KS) distance between the 
pre- and post-therapy distributions of Ktrans and used this to classify the patient as a 
responder/non-responder. All 8 tumours were resected after therapy, and histopathology 
determined the rectal cancer regression grade (RCRG) of each tumour. This provided 
ground truth (4 were responders and 4 non-responders) to compare with our results.  
RESULTS: We have previously shown [5] that in synthetic experiments, our algorithm 
recovered the deformation fields as well as the PK parameter maps used to generate the 
synthetic data (average voxel-wise error <0.7 mm for deformations,  <0.04 for Kep and 
<0.02 for Ve). Here we tested the method on real patient data to quantify the benefit of 
using non-linear motion correction (vs no motion-correction) and to compare the 
performance of the algorithm using two different AIFs (Weinmann vs Orton AIF).  
Fig 2 shows the KS distance between the pre- and post-therapy distributions of Ktrans 
obtained for all 8 patients using MC and without using MC. In Fig 3 we show the 
comparison between the Orton and Weinmann AIFs. Since the KS-distance is expected 
to be high for responders and low for non-responders, we have displayed the minimum 
gap in KS-distance between the group of responders and the group of non-responders in 
Fig 4. For a good classification method, this minimum gap should be high and positive.   
CONCLUSIONS: For both AIFs, the algorithm using non-linear motion-correction 
gave better discrimination between responders and non-responders than the one 
without motion-correction and the Orton AIF gave a better discrimination than the 
Weinmann AIF when combined with motion-correction. We are now extending our 
framework to include other clinical factors and robust estimation of the T10 map. 
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Fig 2: KS-distance using the Orton AIF. The blue band indicates
the minimum (positive) gap between responders and non-
responders using Motion Correction (MC). The red band indicates
the minimum (negative) gap obtained without using MC. 

 
Fig 3: KS-distance using the Orton and Weinmann AIFs with
motion correction. The wider blue band indicates the minimum
(positive) gap between responders and non-responders using the
Orton AIF, and the narrow green band indicates the minimum
(positive) gap obtained using Weinmann AIF. 

 
Fig 4: Minimum gap between responders and non-responders, i.e.
difference between the responder with lowest KS-distance and the
non-responder with highest KS-distance (between pre- and post-
therapy distributions of Ktrans), using each of the 4 methods. Blue
indicates a positive gap and red indicates a negative “gap”. 

Fig 1: Axial slice of the post-
contrast image volume, with
tumour ROI shown in inset
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