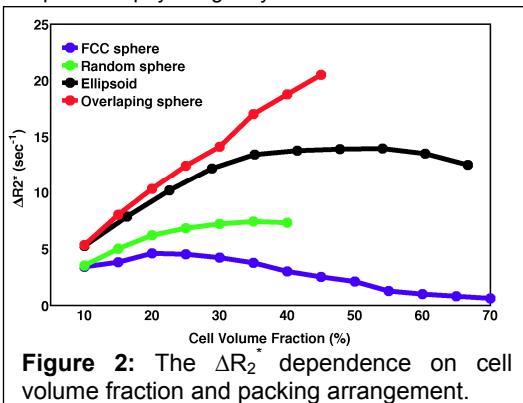

## Cell Density and Spacing Influence DSC-MRI Data Acquired in Brain Tumors

Natenael B Semmineh<sup>1</sup>, Junzhong Xu<sup>2</sup>, Jerry Boxerman<sup>3</sup>, and C Chad Quarles<sup>2</sup>


<sup>1</sup>institute of imaging science, vanderbilt university, nashville, TN, United States, <sup>2</sup>institute of imaging science, Vanderbilt university, <sup>3</sup>Alpert Medical School of Brown University

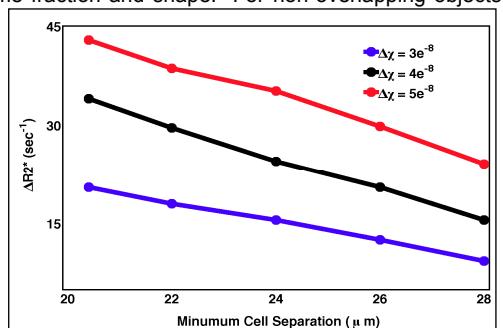
**Introduction:** In DSC-MRI studies, the leakage of contrast agent (CA) into the extravascular extracellular space (EES) creates magnetic field differences ( $\Delta\chi$ ) between cells and the EES, which can result in additional extravascular  $T_2^*$  effects well after the initial bolus of CA passes through the tissue. These effects have been clinically assessed using such metrics as the percent signal recovery [1]. We recently proposed that such DSC-MRI signals are influenced by the extravascular compartmentalization of CA and could potentially be used to extract information about the underlying spatial distribution of tumor cells within tissue (e.g. cell density, intercellular distance) [2]. The goals of this computational study were to 1) identify physically and physiologically relevant cell phantoms for simulating DSC-MRI data and 2) further investigate the relationship between the extravascular  $T_2^*$  effects and tumor cellularity.

**Methods:** Simulated 3D cellular phantoms were created using packed spheres and ellipsoids. To achieve packing densities that approximate those found *in vivo* we created phantoms consisting of randomly distributed overlapping and non-overlapping spheres, face centered cubic (FCC) arranged spheres and ellipsoids with various aspect ratios [3]. For each phantom we varied the sphere or ellipsoid volume fraction, size and spacing. Magnetic field perturbations induced by susceptibility variations between the simulated intra- and extra-cellular compartments, and the associated gradient echo transverse relaxation rates, were computed using a computational approach that combines the finite perturber method (FPM) [4] with the finite difference method (FDM) [5], which we term the Finite Perturber Finite Difference Method (FPFDM) [6]. The susceptibility variations were computed for physiologically relevant CA concentrations.



**Figure 1:** Example of ellipsoid tissue structure and 2D slice through the magnetic field perturbation.




**Figure 2:** The  $\Delta R_2^*$  dependence on cell volume fraction and packing arrangement.

Taken together these results demonstrate that  $\Delta R_2^*$  values are highly dependent on the cell volume fraction and shape. For non-overlapping objects these effects become more pronounced for cell volume fractions ranging from 40 – 60%. For a fixed cell volume fraction of 30% and different  $\Delta\chi$  values, the  $\Delta R_2^*$  values also depend on the distance between cells as shown in **Figure 3**, where the minimum cell separation is the smallest distance between two ellipsoids in a given phantom. For comparison, the length of the longest semi major axis of the ellipsoids in this simulation was 10  $\mu\text{m}$ . Thus, for a given cell volume fraction, cells that are closer together, such as may occur when cells are regionally localized within a voxel, will yield greater  $\Delta R_2^*$  variations as compared to those that are more homogeneously distributed throughout a voxel.

**Conclusion:** The computational results presented herein support the hypothesis that DSC-MRI data acquired in the presence of contrast agent leakage are highly sensitive to variations in cell density, distribution and geometry.

**References:** [1] R. Mangla, et al, AJNR Am J Neuroradiol, 2010. [2] Quarles CC, et al, Phys Med Biol, 2009. [3] G. W. Delaney, et al, Phys Rev Lett, 2010. [4] Pathak A P, et al. NeuroImage, 2008. [5] Junzhong Xu, et al. Phys Med Biol. 2007. [6] Natenael S, et al. ISMRM 2011.

**Acknowledgements:** NCI R00 CA127599, NCI R01 CA158079, NCI P30 CA068485, NCI U24 CA126588



**Figure 3:**  $\Delta R_2^*$  values depend on cell spacing.