Comparison study of T_2^* effects on DCE-MRI and T_1 effects on DSC-MRI between brain tumor and normal brain tissue

Haoyu Wang¹, Yanming Yu², Jiani Hu³, E. Mark Haccke³, Wei Xing⁴, and Shanglian Bao¹

¹Beijing Key Lab of Medical Physics and Engineering, Peking University, Beijing, China, People's Republic of, ²ILogging technique research institute, great wall drilling company, China National Petroleum Corporat, Beijing, China, People's Republic of, ³Department of Radiology, Wayne State University, Detroit, MI, United States, ⁴Department of Radiology, Third Affiliated Hospital, Suzhou University, Changzhou, Jiangsu, China, People's Republic of

Introduction

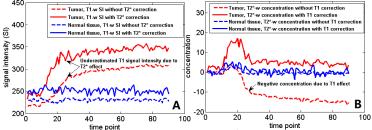
Administration of contrast agent would induce changes of T_1 and T_2^* value of tissue. T_1 weighted dynamic contrast enhanced (DCE) MRI and T_2^* weighted dynamic susceptibility contrast (DSC) MRI could provide information of vascular permeability and perfusion characteristics, respectively. Commonly used contrast kinetic model for DCE-MRI assumes that there is only T_1 changes, while for DSC-MRI only T_2^* changes are assumed. Dual echo pulse sequence has been proposed to simultaneously acquired T_1 - DCE and T_2^* - DSC-MRI. [1-2] However, there is no systemic comparative investigation of T_2^* effects on T_1 -DCE and T_1 effect on T_2^* - DSC between normal and tumor tissues of brain. The goal of this work is to fill the gap.

Materials and methods

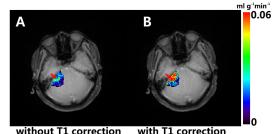
A 2D dual echo FLASH pulse sequence was performed on a Siemens 3T MRI scanner with the first echo as T_1 DCE-MRI and the second echo as T_2^* DSC-MRI. Gd-DTPA was used as contrast agent (0.2 mmol / kg,). Consent forms for subjects have been signed before experiments.

To eliminate T_2^* effect on permeability analysis, firstly T_1 - DCE-MRI are compensated by excluding T_2^* component. The rest of the equations for estimating permeability parameters such as K^{trans} is the same as in literature [3]. To eliminate T_1 effects on perfusion analysis, firstly we calculate T_2^* values of every time point taking advantage of dual echo data as described in literature [1]. Remaining equations for estimating perfusion parameters are the same as proposed in literature [4] Permeability and perfusion (P&P) parameters of DCE-MRI and DSC-MRI data without correction are also calculated for later comparisons. Mean value of P&P parameters of selected ROIs are calculated to quantitatively evaluate the T_2^* effects on permeability and T_1 effects on perfusion in tumor and normal tissue, respectively.

Results


Fig.1A shows T_1 -DCE signal intensity with and without T_2^* correction in tumor and normal tissue, respectively. Fig.1B shows T_2^* -DSC concentration curve with and without T_1 correction in tumor and normal tissue. Fig.2 is the comparison of relative region cerebral volume (rCBV) mapping calculated from DSC-MR images with and without considering T_1 effect. Quantitative comparisons of T_2^* effects on permeability and T_1 effects on perfusion between tumor and normal tissue has also been performed. Difference in percentage between relative rCBV of healthy tissue with and without T_1 correction is about 20%, but for tumor tissue it is about 153% (N=3).

Discussion


As illustrated by Fig.1A 1) T_2^* correction remove the signal loss due to T_2^* shortening (pointed by arrows), and 2) T_2^* shortening has much greater effects on T_1 -DCE signal intensity of tumor than that of normal tissues. Fig.1B demonstrates 1) negative T_2^* -DSC concentration, which is non-physical, can be corrected with T_1 correction (pointed by arrow); 2) systemic error for T_2^* -DSC concentration curve due to reduced T_1 was much greater for tumor than that for normal tissue, and 3) there was a dramatic change in the pattern of tumor's concentration curve after T_1 correction. Quantitative comparison of permeability and perfusion parameters confirms that it is more crucial to correct T_2^* effects on permeability and T_1 effects on perfusion in tumor tissue than normal tissue.

Conclusion

 T_2^* effects on DCE-MRI and T_1 effects on DSC-MRI could lead to wrongly estimation of P&P parameters, and these effects are much greater in tumor regions than in normal brain tissue.

Fig.1A is T_1 -DCE signal intensity with and without T_2^* correction in tumor and normal tissue, respectively. **1B** shows T_2^* -DSC concentration curve with and without T_1 correction in tumor and normal tissue, respectively.

Without 11 correction With 11 correction Fig.2 Comparison of relative rCBV mapping estimated from DSC-MR images with and without T_1 correction

- [1] Vonken, Ejpa. et al. MRM 2000;43(6):820-827. [2] Ludemann, L. et al. Annals of Biomedical Enginerring 2009;37(4):749-762.
- [3] Yankeelov T.E. et al. Current Medical Imagng Reviews 2007; 3(2):91-107. [4] Weisskoff, R. M.et al. MRM 1993; 29(4):553-559