Dynamic susceptibility Contrast MRI: Improved Discrimination of Hypoperfused Tissue
Birgitte Fuglsang Kjelby', Seren Christensen?, Irene Klarke Mikkelsen', Kim Mouriden', Peter Gall®, Valerij G Kiselev’, and Leif Ostergaard’
!CFIN, Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark, *Department of Neurology and Radiology, University of Melbourne, Melbourne,
Australia, * Department of Diagnostic Radiology, Medical Physics, University Hospital Freiburg, Freiburg, Germany

Introduction: Perfusion measurement by DSC-MRI is becoming increasingly important as a tool for clinical assessment of
hypoperfusion and as an endpoint in therapeutical trials. In acute stroke, interest is in identifying thresholds for tissue mean transit time
or cerebral blood flow (CBF) values to guide the selection of patients for thrombolysis. In pursuing this, perfusion measurements must

be optimized to detect and distinguish subtle levels
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level was 1) optimized to the individual AIF width, 2)
fixed on a value obtained from a broad AIF, in order
to investigate the gain of equal regularization level in
a multi-subject comparison [5].

Results: The increased precision and decreased accuracy of CBF for ‘Truncation FT’ is shown in figure 1. In figure 2, the enhanced
discrimination ability is shown in simulation images of an infarct: the infarct was simulated using concentric shells with CBF decreasing
towards the center. The threshold for irreversible tissue damage at CBF < 12 ml/100ml/min is indicated at letter ‘A’ and the threshold for
reversible tissue damage is indicated at letter ‘B’. The discrimination ability is shown as the statistical power in contour plots for the
different deconvolution methods (fig. 3). The proposed methods show a markedly improved discrimination (larger red area in the figure)
as compared to the existing methods as visually confirmed in figure 2. Moreover, Truncation FT with equal threshold showed excellent
discrimination ability in the multi-subject simulation (fig 4b).

Discussion: The simulations suggest that the proposed method improves separation of CBF levels within subject as well as between
subjects when a common regularization level is used. We therefore speculate that the proposed technique will lead to better
delimination of hypoperfusion areas in stroke and will increase the efficacy of clinical trials with CBF as endpoint.
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Figure 4. Multi-subject discrimination vs SNR and CBF levels. Simulation values as in figure 3.
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