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Introduction: Recently, mapping anatomical brain circuitry in humans via diffusion tractography and analyzing resultant brain networks using graph 
theory have gained significant attention, as such studies can reveal crucial information on brain functions (1). However, same effort has not been 
reported in chimpanzees. Chimpanzees are our closest living relatives, and mapping their brain connectivity may provide insight into the unique 
evolutionary changes of human brains. To map brain networks of chimpanzees and compare them with those of human beings, several key technical 
challenges must be overcome. In contrast to humans and macaques, studies of chimpanzees’ brain are scarce and no digitally available parcellation 
scheme currently exists. Moreover, their brain size is only the third of that of humans. As a result, an unbiased parcellation of chimpanzee and human 
brains for an objective comparison is a challenge that must be solved. Here we tested multiple relatively high-resolution parcellation schemes (>500 
cortical regions) on chimpanzees and studied the effect of nodal number on the cross-subject nodal correspondence and on the graph theoretic 
measures. This is the first step toward establishing a robust framework for deriving and comparing anatomical brain networks across three species 
(humans, chimpanzees and macaques) to try to understand the evolution of the human brain.  
 
Methods: Subjects: Three chimpanzee subjects (Wenka, Cheeta, and Lulu: all females, age: 54, 54, 56 yrs) were used in this study. MRI 
acquisition: MRI was performed on a Siemens 3T Trio scanner (Siemens Medical System, Malvern, PA). High-resolution MPRAGE T1 scan 
protocol, optimized at 3T, used a repetition time/inversion time/echo time of 2600/900/3.06 msec, a flip angle of 8°, a volume of view of 
205×205×154 mm, a matrix of 256×256×192, and a resolution of 0.8×0.8×0.8 mm, NEX=2. Diffusion MRI data were collected with following 
parameters: voxel resolution of 1.8×1.8×1.8 mm3, 41 slices covering the whole brain, 60 diffusion weighted directions and a b value of 0, 1000 
sec/mm2, repetition time/echo time of 5900/86 msec, field of view of 130×230 mm2, matrix size of 72×128, partial fourier option of 6/8, NEX=8, 
with phase reversal method to correct for susceptibility distortion (2).  Parcellation Method: First, gray-matter/white-matter (GMWM) interface 
masks were generated based on partial volume images generated by the FAST function (www.fmrib.ox.ac.uk/fsl/). Initial seed points were then 
iteratively added to the interface mask such that the distance to the nearest node remained a static value, and the nodes were simultaneously grown 
taking into account the relative position and current size of all of their neighboring nodes. The generated parcellation mask was then dilated to aid in 
the mask transformation to each subject’s diffusion space. Using FNIRT registration tools in FSL (fmrib.ox.ac.uk/fsl/) and empirically optimized 
parameters, the parcellation scheme was projected from the template space into the diffusion space of each subject. For quantitative evaluation of the 
nodal overlapping, the parcellation schemes with 500, 1000, and 2000 nodes from each subject’s diffusion space were non-linearly registered onto 
one subject (Wenka), and then the distance between the centers of the gravity (cog) locations for each node across subjects were calculated. 
Diffusion Tractography and Graph Theory Measures: The high angular resolution diffusion imaging datasets were processed through a global 
tractography algorithm (3) to reconstruct the connections between each nodal pairs. The number of tracts were added and compiled into a 1000×1000 
adjacency connectivity matrix using each projected parcellation scheme, and then analyzed using the Brain Connectivity Toolbox (4). Measures of 
nodal degree were computed and then mapped back to their 
corresponding nodes for visualization purpose.  
 
Results: The parcellation schemes with 1000 nodes number in each 
individual’s diffusion space as well as in the template space are shown 
in Fig.1. It can be seen that with 1000 nodes, there is a good 
correspondence in terms of nodal location across subjects (yellow 
circle). The quantitative measure of the distances of the nodal cog 
between Lulu and Cheeta after registering to Wenka shows mean 
differences of 0.79, 0.83, and 0.94 voxels for parcellation schemes of 
500, 1000, and 2000 nodes, respectively. If a spherical nodal shape is 
assumed, these values correspond to 19.8%, 26.3%, and 37.4% of the 
average nodal radii in each scheme. With regards to the degree maps for 
each subject, although there are observed differences in the location of 
high degree nodes, the pivotal nodes remain consistent across all 
subjects (Fig.2). It is also noteworthy that the topology of the degree 
map derived in our study resembles that derived in humans using the 
same nodal number (5), inferring a possibly conserved architecture of 
the brain networks between human and chimpanzee.  
 
Conclusions: We demonstrated an approach for generating a relatively 
high-resolution parcellation of the cerebral cortex that is independent of 
existing parcellation scheme for cross-species comparisons. Our results indicate that with nodal number up to 1000, there is still a good 
correspondence of node locations across subjects. This effort on carefully examining the effects of nodal and edge selections on the characteristics of 
brain networks is a prerequisite of a robust mapping of brain connectivity for cross-species comparisons. 
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