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Introduction  A problem of significant interest is the determination of neural pathways from diffusion tensor imaging (DTI) data.  Current fiber 
tractography methods generally fall into two categories: 1) deterministic methods, typically based on some form of streamline construction [1] or 2) 
probabilistic methods, typically also based on streamline construction, but with the most likely principal diffusion direction drawn from a sample of 
the posterior distribution of principal diffusion directions, thus equating the probability of a tract with the frequency it is reconstructed by a Monte 
Carlo random walk governed by properties of the diffusion tensor (e.g., [2]).  These algorithms are thus probabilistic in the local (spatial) sense and 
hence determining any globally optimal path from them is problematic.  Here we present a truly global method that 
defines and constructs an optimal path between two user defined regions, and thus can be used to quantitatively 
assess the probability of connection between brain regions.  The method is based upon the maximal entropy 
random walk [3] which is used to construct the pathway of maximal entropy regions in a 3D diffusion tensor field.  
The computational method is surprisingly simple and straightforward to implement. 
Theory The DTI data are assumed to be on a finite, connected, 3D regular lattice (i.e., all nodes have the same 
degree) defined by the symmetric adjacency matrix A with elements Aij = 1 if i and j are neighboring nodes, and Aij 
=0 if they are not.  A particle hops between nodes in a discrete time Markov fashion, from node i at time t to 
neighboring node j at time t +1 with probability Ρij, independent of its past history. If two nodes are not linked (Aij 
= 0) then Pij = 0 and at each node Σj Ρij=1.  The probability πi(t) of finding a particle at node i at time t is found 
recursively from πi(t)= Σj πj(t-1) Ρji. Thus the probability P(σ[i0,it]) of generating a trajectory σ[i0,it] of length t 
passing through the nodes (i0, i1,..., it-1,it) is P(σ[i0,it])= P0,1P1,2 ...Pt-1,t. The maximally random trajectories are those 
that are equiprobable for a given length t and endpoints (i0,it) and maximize entropy production rate s =-Σi πi

* Σj
 Pij 

ln Pij.  The transition probability Ρij results in a unique stationary state πi
* that satisfies πi

* = Σj πj
* Ρji.  For the 

generic random walk (GRW) Ρij = Aij /ki where ki = Σj Aij is the degree of node i for which πi
*
 = ki / Σj kj so that 

P(σ[i0,it])=1/(k0,1 k1,2 ...kt-1,t).  With this form of Ρij trajectories of equal length t and equal endpoints are not 
equiprobable except on a k-regular graph.  The transition probability that is equiprobable for trajectories of equal 
length t and equal endpoints is Pij =(Aij / λ)(ψi / ψj ) where ψi is the normalized (Σi ψi

2=1) principal eigenvector (i.e., 
corresponding to the largest eigenvalue λ) of the adjacency matrix A [3].  This defines the maximum entropy 
random walk (MERW) distribution, for which πi

* =ψi
2.  The key fact is that the local transition probabilities 

between nodes depend on the global structure of the graph through the eigenvector ψi. The GRW and MERW are 
the same on k-regular graphs but differ dramatically on graphs with unequal node weights:  the πi

* of MERW 
localizes in the largest Lifshitz sphere.  For tractography, 3D lattice node weights are defined by a coupling 
coefficient αij = (FA)i (FA)j ei • ej  between neighboring nodes (i,j) where (FA)i and ei are the fractional anisotropy 
and principal eigenvector of the diffusion tensor at node i.  To construct the maximum entropy trajectory σs 
between two specified points, rather than πi

*, a “test” distribution of particles is placed at a user defined seed point. 
The largest Lipshitz sphere to which the stationary distribution will concentrate is of little interest in this problem; 
rather, we construct the largest Lipshitz sphere at the user defined trajectory endpoint in order to force this to be 
the location of the final (stationary) distribution.  From the initial distribution πi(0) at node i and time 0, this 
trajectory can be generated by computing each time step πi(t +1)= Σj πj(t) Ρji where Ρji is the MERW generated by 
A constructed from the coupling coefficients.   
Results DTI data were collected on a GE Signa 3T scanner with a clinical dual spin echo EPI acquisition with 
b=1000s/mm2 and 61 gradient directions.  A composite map of FA overlayed with the principal eigenvectors is 
shown for a single slice in Fig 1.  Diffusion tensors were computed using AFNI, and the coupling coefficients 
were calculated at each node.  A threshold was applied to generate a sparse matrix representation of the white 
matter volume and from this was computed the adjacency matrix A. The principal eigenvector and eigenvalue of A 
were computed using Arnoldi’s method.   For clarity we show 2D results.  A small distribution πi(0) of particles is 
placed at a user defined initial point (Xi).  At a user defined termination point (Xf) a small sphere (r=3 voxels) 
was created within the adjacency matrix. πi(t) was then iteratively computed and at each time step  the distribution 
of particles follows the maximum entropy trajectory and these values are stored.  The final trajectory is visualized 
by combining the particle distributions for all time steps.  Examples are shown in Fig 2 and Fig 3. 
Conclusion   We have developed a fiber tractography method that computes the maximum entropy trajectories between locations and depends upon 
the global structure of the diffusion tensor field.  Computation of the pathways requires only solving a simple (albeit large) eigenvector problem for 
which efficient numerical routines exist, and a simple iterative computation. This method has potential significance for a wide range of applications, 
including studies of brain connectivity. 
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Fig 1. FA map with principal evecs 

Fig 2. Trajectory from Xi to Xf1. 

Fig 3. Trajectory from Xi to Xf2. 
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