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Introduction: Diffusion Tensor Imaging (DTI) [1] is useful for characterizing tissue microstructure, allowing determination of, for example,
structural changes in brain white matter caused by stroke that are not evident in conventional MRI. Because the diffusion tensor is a rank 2
symmetric tensor, DTI requires a minimum of seven scans of the same image to fully solve the diffusion tensor. The low temporal resolution and the
associated low spatial resolution and SNR present a significant challenge for the practical utility of the technique in clinical settings. To accelerate
the acquisition time, a model-based approach to reconstruct undersampled DTI data has been proposed [2]. Rather than first reconstructing the
diffusion weighted images then fitting the tensors, the diffusion tensor fields are directly estimated from k-space data via model-based reconstruction.
The rationale is that better performance might be achieved by estimating fewer unknowns in the reconstruction and by providing a platform in which
multiple practical considerations, such as phase error and field inhomogeneity, can be addressed in a single step. Here, the previous model-based
approach is extended to multi-coil, EPI DTI data, which is more common in clinical applications, and its performance is compared against traditional
compressed sensing reconstruction [3] as well as the parallel reconstruction techniques, GRAPPA [4] and SENSE [5].

Methods: Model-based reconstruction of undersampled data is performed by fitting the diffusion tensor, D, directly to the acquired data via
minimizing the cost function in Eq. (1), where F), is the undersampled Fourier operator, d,, is the undersampled DTI k-space data, TV is the total
variation operator with a regularization weight, a. N is the total number of diffusion weighted images and L is the number of coils used to acquire the
data. The new signal model, m,, is defined in Eq. (2), where S, is the estimated coil sensitivity of the " coil. 1y is the non-diffusion weighted

reference image, b is the diffusion weighting factor, g, is the diffusion encoding directional vector, ¢,, is the image phase due to imperfections in
th

acquisition. Minimization is accomplished via gradient descent, requiring the derivative, dC(D)/dDg, , of Eq. (1) with respect to the & element of
the tensor (where & p € {x,y,z}). The process is repeated until all parameters have converged, in which Eq. (1) has reached a minimum.
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To test the performance of the proposed approach, fully-sampled Cartesian k-space DTI data (64 encoding directions, b = 800 s/mm?, one b = 0
image, coils = 5) was acquired with a stroke patient on a Siemens 1.5T scanner with an EPI readout and TR=5.7 s, TE=138 ms, pixel size=1.8x1.8
mm’, slice thickness=2.5mm.. The acquired k-space was retrospectively undersampled to simulate an acceleration factor, R, of 2. The coil sensitivity,
S), was estimated using the fully-sampled non-diffusion weighted image, /). The image phase, ¢,;, was estimated using the fully sampled central k-
space, low-passed using a Hann window. Therefore, all the terms in Eq. (2) are fixed, except for D. The performance of the proposed model-based
approach was assessed by comparing fiber orientation deviation angle (A6, in degrees) and fractional anisotropy difference (AFA, dimensionless)
with respect to the fully-sampled “gold standard”. The results of the proposed model-based approach are then compared against other common
reconstruction methods: traditional compressed sensing, SENSE and GRAPPA. The acceleration techniques presented here are valuable in EPI
because they effectively shorten TE, thus boosting the measured signal. Here, the GRAPPA and SENSE reconstructions were adapted from code
posted online [6].

Results and Discussion: Figure 1 shows the error distributions of the
reconstruction methods mentioned above. Table 2 reports the average values
and SEM of the error metrics for each case. In terms of A0, SENSE
performs the best, while the other three methods have similar distributions
and means. The proposed model-based approach performs the best in terms
of FA estimation, as seen in Fig. 1 and Table 1. There is a clear bias towards
500l . overestimation of FA in the case of SENSE, as seen in Fig. 1. This may be
because of the different sampling patterns employed in the different cases.
There has been previous work in comparing the results of GRAPPA and
SENSE in DTI [7]. The proposed model-based reconstruction technique is
shown to be a promising reconstruction technique for FA estimation,
lacking the bias seen in SENSE reconstruction. Future work will include
acquiring data from more patients and investigating why SENSE
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Figure 1: Left, distribution of A9 for the different reconstruction
methods. Right, distribution of AFA. SENSE performs the best in

terms of A, while the proposed model-based approach estimates FA
the best. There is a bias towards overestimation of FA in the case of
SENSE.

Table 1: Performance of reconstruction methods in terms of fiber
orientation and FA measurement errors. (Mean + SEM)

Method Mean A (deg) RMS AFA (107)
Model-Based 10.77 £ 0.17 5.58 £ 0.04
Compressed Sensing 11.31+0.18 6.31£0.04
SENSE 7.79 £0.12 7.09 £0.05
GRAPPA 11.16 £ 0.18 6.33+£0.05
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outperforms the other methods. These results may help form a basis when
deciding which technique to use when reconstructing accelerated DTI data.
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