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INTRODUCTION: Diffusion tensor MRI is the only non-invasive tool capable of quantifying differences in tissue microstructure and, given that the white matter
mediates brain connections', it has been rapidly adopted by the neuroscientific community. The literature is awash with studies of differences in diffusion anisotropy
(most typically characterized by fractional anisotropy (FA)) between groups, studies of hemispheric asymmetry, or studies correlating individual differences in
performance on a cognitive / behavioural task with individual differences in white matter microstructure’’. ~An increasingly popular approach to conducting these
studies is to perform a global search for differences /asymmetries/ correlations on a voxel-by-voxel basis, the most widely used method being ‘Tract Based Spatial
Statistics’ (TBSS”) — which combines a normalization-skeleton-projection step to maximize chances of comparing ‘like with like’, followed by statistical inference
using threshold free cluster enhancement (TFCE®). This work reports on the stability of results obtained with this approach when looking for correlations between DTI
metrics and behaviour (i.e. performance-microstructure measures), and when looking at hemispheric assymetries. In particular, we focus on the sensitivity of the method
with respect to the sample of ‘normal healthy’ participants recruited to the study.

METHODS: Healthy right-handed participant (N=24, age=31.1+£6.7y) were
recruited to the study. MR Data Acquisition: Cardiac-gated diffusion-weighted
(DW) data were acquired using a 3T GE HDx MRI scanner, with the following
parameters: b-value = 1200 s/mm?; 60 directions; 6 non-DW images; 60 axial
slices; TR = 20 R-R intervals. DW-data were motion/ distortion corrected
followed by appropriate re-orientation of the diffusion encoding vectors® prior to
single tensor fitting providing anisotropy and diffusivity indices (fractional
anisotropy FA, mean diffusivity MD, axial diffusivity L1 and radial diffusivity
RD) in ExploreDTI”. Cognitive Data Acquisition: Three behavioural measures
were acquired from each participant: choice reaction time (CRT)®, mental
rotation’ and intelligence quotient (IQ)'. These tests were chosen as previous
studies have found DTI-performance correlations using them®''. Stability
Testing: Stability was assessed using a bootstrapping procedure where a ‘leave
4 out’ procedure was used for the N=24 participants. For each of 100 iterations,
a unique set of 4 participants was randomly eliminated from the total of 24. The
skeletonization-projection was performed for the remaining 20 participants,
prior to voxelwise cross-subject permutation-based non-parametric GLM
statistics by randomize'*(1000 permutations) with TFCE-based inference (p =
0.05). Both behaviour-microstructure correlation and hemispheric asymmetry
analyses were performed for each iteration, yielding 100 TBSS results. Cross
Correlation: To aid in visualization, for a given slice location, the skeletonised
and thresholded t-statistic maps were binarized and collapsed into a single
vector comprising zeros (not significant) or ones (significant correlation /
asymmetry) and a cross-correlation (CC) matrix of the 100 vectorized results
was performed. This CC-matrix was then re-ordered using the Fiedler vector of
the normalized Laplacian formed from the CC-matrix'*. Behavioural and
diffusions measurements were checked for outliers and their influence on the
stability of results determined.

RESULTS: The bootstrapping procedure reveals a large variability of results
when correlating task-performance with FA and RD — even within task, and
despite the fact that the group of 20 subjects in each iteration was drawn from
the same pool of 24 subjects. Space prohibits us for showing all results from the
other behavioural measures here — so we focused on CRT-RD correlations.
Figure 1C shows the wide array of results obtained. Figure 1B shows that the
probability of getting a significant FA-CRT and RD-CRT correlation in a voxel
ranges from 0-89% and is very heterogeneous across the skeleton. The majority
of the voxels appear significant less than 50% of the time (less than chance).
We took a closer look at the behavioural measures, and 3 participants were
deemed to be outliers (see boxplot in Fig. 1A). However, we found no
significant effect of these individuals within the resampling results. Moreover,
looking at the cross-correlation of skeletal-diffusion values within a slice
detected outlier in RD, but again this outlier did not appear to be driving the
variability of the CRT-RD correlation results. Results from hemispheric
asymmetry analyses were found to be far more stable. Fig 2 shows results for
FA, and even when selecting iterations from the top, mid or bottom of the sorted
cross-correlation matrix, the results are largely consistent with little variation
along the skeleton.

DISCUSSION: Tract based spatial statistics provides a unique tool to assess

brain connectivity. However, the number of participants required to produce

stable correlation maps is unknown. Importantly, we showed using a resampling

method that for three different behavioural measures the stability for a literature

average number of participants (N=20) was low.
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