

Comparison of Different Models for Analysis of Renal Diffusion Imaging

Jinxia Zhu¹, Claudia Lenz¹, Markus Klarhöfer¹, Oliver Bieri¹, Klaus Scheffler^{2,3}, and Gregor Sommer⁴

¹Radiological Physics, University of Basel Hospital, Basel, Switzerland, ²MRC Department, MPI for Biological Cybernetics, Tübingen, Germany, ³Department of Neuroimaging and MR-Physics, University of Tübingen, Tübingen, Germany, ⁴Department of Radiology, University of Basel Hospital, Basel, Switzerland

Introduction: Compared to the standard mono-exponential approach to analyze diffusion weighted MRI data, the application of more complex models can result in valuable additional insight into pathological processes. This work compares results from mono-exponential, stretched-exponential, diffusional kurtosis and bi-exponential models, which were applied to analyze renal diffusion imaging data sets. In a first step, reference data for each model was obtained from 5 healthy subjects. The reference model parameters were then compared to results from renal pathologies.

Methods: Studies were performed on a 1.5T whole body system (Magnetom Avanto, Siemens, Germany). The kidneys of 5 healthy subjects and 2 patients with focal kidney lesions (Patient 1: benign cortical cyst; Patient 2: Multifocal papillary renal cell carcinoma (RCC)) were investigated during free breathing with a single-shot EPI DWI sequence with 8 b-values of 0, 10, 40, 70, 120, 250, 450, and 700s/mm². Other imaging parameters were: matrix:156x192, voxel size:2.4x2.2x6.0 mm³, TR=3700ms, TE=65ms, 4 averages. Acquisition time was 5 min 38 s using parallel imaging with an acceleration factor of 2 and partial Fourier acquisition. Four different models were fitted to the data on a pixel by pixel basis using MatLab (Mathworks, Natick, Mass). Eq.1 describes the mono-exponential diffusion model (1) with the apparent diffusion coefficient as parameter of interest. The stretched exponential model (2) including the stretching parameter α , that defines the deviation of the signal decay from a mono-exponential and the distributed diffusion coefficient DDC is given by eq.2. The Kurtosis model (3) described by eq.3 results in an apparent diffusion coefficient D_{app} and the diffusional kurtosis K_{app} . The bi-exponential model (4) as given by eq.4 consists of the perfusion fraction f, the diffusion coefficient D_1 and the pseudo-diffusion coefficient D_2 . $S(b)$ is the signal measured at a given b-value, S_0 is the signal amplitude in the absence of diffusion weighting.

Results and Discussion: Fig 1-3 show the pixel wise fit results from the kidneys of one healthy volunteer and the two patients. Fig 4 presents the average values of the fit results of the five healthy subjects, as well as ROI-based values from the focal pathologies present in patient 1 and 2. Both the stretched exponential model and the kurtosis model provided solid fit results for the parameters α and K_{app} , respectively. While the cyst is characterized by an α -value close to 1, the two RCC lesions show a clear deviation from mono-exponential behavior with α -values around 0.5. This deviation from Gaussian diffusion is even more pronounced in the kurtosis maps, where both RCC-lesions can be clearly differentiated from healthy parenchyma by their higher K_{app} , which is consistent with reduced diffusivity in the tumor due to high cellular density. Compared to the other approaches the application of a bi-exponential model to our data resulted in a very high variability of the resulting parameters and in addition did not allow for a clear discrimination of tissues.

Conclusion:

Quantification of renal DWI data by stretched exponential and diffusion kurtosis models result in additional parameters that may facilitate the better characterization of different tissue types like RCCs.

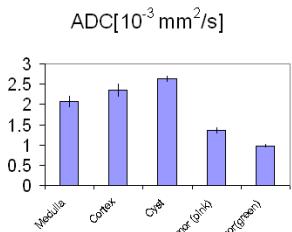
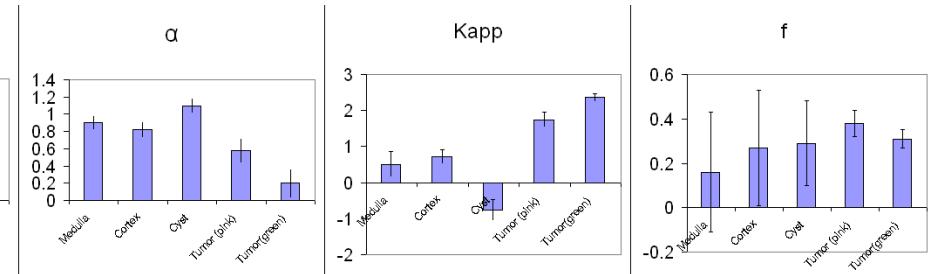



Fig. 4: Fit results of the average values of five healthy volunteers, one cyst, and two RCC lesions

Acknowledgements: The authors acknowledge support by the Chinese Scholarship Council

References: (1) Le Bihan et al. , *Radiology* 161(1986), (2) Bennett et al. , *MRM* 50(2003), (3) Jensen JH et al. , *MRM* 53(2005), (4) Le Bihan et al. , *Radiology* 168(1988),