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Introduction: The dependence of MR-measured apparent diffusion coefficients (ADCs) of molecules in biological tissues on a controllable,
acquisition-specific timescale allows measurement of the characteristic length scales of tissue compartments and it has been recognized as a powerful
mechanism for deriving information on tissue microstructure [1]. Metabolites are generally considered to be confined mainly in intracellular
compartments and to exchange at a slower rate than water molecules between microscopic pools, making them better probes for
compartmentalization in neural tissues [2,3] and therefore providing higher specificity in studying brain tissue microstructure and pathology. In
addition, because of the differing molecular environments modulating dipolar interactions among proton spins, each micro-anatomical pool may also
be characterized by a different 'H transverse relaxation rate (1/T,) [4]. The interaction between relaxation and diffusion characteristics has been
thoroughly studied in porous media [5] and in excised nerves [4,6]. In this study, for the first time the interaction between relaxation and diffusion
was studied for both water and metabolites in the human brain in vivo at 7T.

Methods: Scans were performed on a 7T scanner (Philips, Best, the Netherlands) equipped with a 32-channel receive coil and a quadrature transmit
head coil (In Vivo, Florida). A single voxel, diffusion-weighted STEAM sequence was used to measure the diffusion of water and of the metabolites
tNAA, tCr and tCho (not all data shown here). Two data-sets were obtained, from 7 young healthy volunteer each (29 + 8 years), using two different
diffusion times (A). Sequence parameters for the two protocols were: A = 246/44ms, TM = 230/14ms, 6 = 10/24ms, TR = 3 cardiac cycles
(triggering using PPU), spectral width 3kHz, 1024 sample points. Diffusion gradients were applied in 3 standard quasi-orthogonal directions with 5
increasing gradient strengths chosen in the range 0-3.6G/cm in order to obtain identical b-values of 0, 285, 1140, 2570, and 4575s/mm? in both data-
sets. A bipolar gradient scheme was employed to minimize eddy currents. Spectra were acquired for three echo times TE = 40/63, 90, 160ms with an
increasing number of averages in order to keep similar SNR for each scan. A VOI of 30x20x19mm® was positioned in parietal WM. The residual
water peak was used to perform phase and frequency corrections on individual spectra before summation. Non-water suppressed spectra were also
acquired to derive water diffusion and relaxation properties as well as for eddy current corrections.

Results and discussion: The water and metabolite normalized signals as a function of b-value show a non-monoexponential trend (Fig.1b),
reflecting, among other factors, the presence of physical restriction hindering the diffusion of molecules. In order to extract the ADC values, the
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Fig.1:Water (a), tNAA and tCr (c) ADCs measured as a function of echo time for two different diffusion times
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Fig.2: Water (a), tNAA and tCr (b) proton transverse relaxation rates 1/T> measured as a function of b-value

for two different diffusion times A.

the metabolites, and may need to be modeled by including some form of compartmentalization in axons and glia, with exchange between “bound”
and “free” states affecting both metabolite relaxation rates and diffusion.
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