
Figure 1: Comparison of our two-population
model for the EC diffusion with MC simulations
showing its advantage over existing approaches 
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Introduction. What can the diffusion coefficient De of the extracellular (EC) water tell us about the packing geometry of cells? The answer to this 
question could help reveal clinically relevant morphological changes in disease, such as the degree of cell swelling, shrinkage or loss, or change in 
their packing geometry. Unfortunately, relating the long-time limit of the diffusion coefficient to the packing geometry has been a notoriously 
difficult problem. An equivalent problem of finding the dielectric function, or the electrical conductivity, of a suspension of “grains” in a “matrix” 
goes back to the mid-19th century1,2, and has been a testing ground for effective medium approaches3–8. They work well for small volume fractions of 
the grains1–6, or when the properties of the grains and of the matrix are similar7,8. For the physiologically relevant tight packing of practically 
impermeable cells, these approaches fail: the Hashin-Shtrikman bounds9 and the Bruggeman-Sen solution5,6 give only order-of-magnitude estimates, 
with ~100% errors in the physiologically relevant range of EC water fraction φ~0.2−0.5 (Fig. 1). Technically, as each grain (cell) strongly disturbs 
the diffusion paths, and their mutual effects are important due to a tight packing, there seems no obvious “small parameter” to control the 
convergence of any perturbative expansion. Yet, practically, addressing this challenge is very important, as the EC diffusivity De in the space 
between impermeable axons is a relatively straightforward parameter obtained from a two-compartment fit of the diffusion signal in white matter 
(WM) transverse to the fiber, measured at long diffusion times with the relatively small gradients available in clinical settings. 
Methods. Here we develop a new analytical approach to this problem, which for the first time displays quantitative agreement with Monte Carlo 
(MC) simulations of the two-dimensional diffusion restricted by randomly packed impermeable disks whose size distribution reflects the measured 
axonal diameter distribution10. This geometry applies to quantifying white matter WM fiber integrity: Axons are modeled as parallel impermeable 
cylinders (disks in the plane transverse to fiber), their packing affected by either axonal loss (random removal of the disks), or demyelination (disk 
shrinkage). Fig. 1 shows the MC-simulated tortuosity Λ = D0/De, with D0 the free water diffusivity, together with results of our analytical modeling. 
 Our key idea is in the accounting for the distribution of axon sizes. As the axonal size distribution10 has both a peak (representing many small 
similar-size axons) and a long tail (a few large axons), we approximate the disk size distribution by two populations: “small”, ‘s’ (of the same size), 
and “large”, ‘l’, with the ratio ξ = ψl/ψs between their volume fractions being the only adjustable parameter characterizing the distribution. 
Results. We consider the effect of small disks first, “homogenizing” at the scale exceeding their size, and then use the reduced diffusivity of 
population ‘l’ to describe the further restriction to diffusion caused by rare large disks. In this way, the “small parameter” for the large disks becomes 
their relatively small fraction ψl. The challenge still remains to model the restriction caused by tightly packed small disks. Remarkably, we find that 
the effect of small disks randomly placed in-between the large ones is well captured locally by the exact solution11 for a square lattice of disks. We 
focus on the EC conductivity σ(φ) assuming the EC space filled with material with σ0 ≡ 1; the EC tortuosity7 Λ = D0/De = φ/σ(φ). The openings 
between small disks form a “resistor network”12, which we treat locally as a square lattice made of “conductances” σs=σ□(ψs/(1 − ψl)), where σ□(ψ) is 
the exact conductivity11 of a square lattice of identical nonconducting disks with fraction ψ. Effective medium treatment of adding large disks in the 
background of σs yields σ = σ□(ψs/(1 − ψl))·(1 − ψl)2, the black curve in Fig. 1. Using this two-stage approach, our tortuosity is clearly much closer to 
the MC results than that of earlier approaches5–7given by σ = φ2 and Λ = 1/φ (red dashed line). In Fig. 1, we took ξ = 3:5 = 0.6. This corresponds to 
large axons with diameter exceeding ~2μm,10 contributing ψl/ψ = ξ/(1+ξ) ≈ 38% of the net axonal volume ψ=ψs+ψl =1−φ.  
 Demyelination shrinks both types of axons (in simulations, we chose shrinking of all disks by 
a common factor λ > 1). The conductivity of population ‘s’ becomes σs→σ□(ψs /λ2(1−ψl)). The large 
disks are now substituted by disks with impermeable core of radius R/λ, coated by a shell between 
R/λ and R with free conductivity σ0. Each such disk is equivalent to that with conductivity σl = σ0·(λ2 
− 1)/(λ2 + 1); filling in the space with these disks up to the volume fraction ψl using the approach5–7, 
we obtain the magenta line in Fig. 1 with no extra free parameters (ξ fixed to 0.6). 
 Axonal loss: In our MC simulations, we choose to remove disks at random irrespective of 
their radius, preserving the shape of their size distribution. The loss reduces the relative fraction fs = 
ψs/ψs,0 of small disks (where ψs,0 and ψl,0 are disk fractions before removal), and is treated12 as the 
substitution of randomly chosen orthogonal bonds of a square lattice by those with unit conductance, 
σ□→σ0, increasing σs→σs(fs). The loss of large disks can be treated using the infinitesimal addition 
approach5–7, by infinitesimally increasing the fractions f0 and fl of “holes” (filled with σ0) and grains 
(with σl = 0), from 0 up to ψl,0–ψl and ψl correspondingly, with fixed ratio df0/dfl, in the background 
of σs(fs). The corresponding differential equation yields an implicit solution for σ(φ),  φ = 1−ψs−ψl: 
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shown by the blue line in Fig. 1, again with no extra free parameters (keeping the same ξ =0.6).  
Discussion. The unexpectedly good agreement between theory and MC simulations even for very tight packings suggests that the most relevant 
feature of the cell size distribution10 is the relative contribution ξ of its tail (large axons) to its bulk (small axons), with the variation of sizes within 
those populations being less important. Our approach also explains the decoupling of axonal loss and demyelination in the EC diffusion: While 
demyelination sharply increases the “conductance” of the tightly packed population ‘s’ leading to a sharp tortuosity drop, the axonal loss introduces 
isolated conducting “pockets” in the midst of poorly conducting bulk, resulting in a very slow initial conductivity increase and, thereby, the initial 
overall decrease of EC diffusivity De∝σ(φ)/φ in response to the increase of φ (Fig. 1). The decoupling of axonal loss and demyelination can allow 
one to differentiate between different kinds of WM damage. Our analytical approach extends onto the simultaneous demyelination and loss of small 
and/or large axons, and can be used to quantify subtle changes in WM structure in disease using clinically available low-q DWI metrics.   
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