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Introduction. What can the diffusion coefficient D, of the extracellular (EC) water tell us about the packing geometry of cells? The answer to this
question could help reveal clinically relevant morphological changes in disease, such as the degree of cell swelling, shrinkage or loss, or change in
their packing geometry. Unfortunately, relating the long-time limit of the diffusion coefficient to the packing geometry has been a notoriously
difficult problem. An eqhulvalent Problem of finding the dielectric function, or the electrical conductwlty, of a suspension of “grains” in a “matrix”
goes back to the mid-19" century *, and has been a testing ground for effective medlum approaches . They work well for small volume fractions of
the grains'™®, or when the propertles of the grains and of the matrix are similar’®. For the physiologically relevant tight packing of practically
impermeable cells, these approaches fail: the Hashin-Shtrikman bounds’ and the Bruggeman-Sen solution™® give only order-of-magnitude estimates,
with ~100% errors in the physiologically relevant range of EC water fraction ¢~0.2—0.5 (Fig. 1). Technically, as each grain (cell) strongly disturbs
the diffusion paths, and their mutual effects are important due to a tight packing, there seems no obvious “small parameter” to control the
convergence of any perturbative expansion. Yet, practically, addressing this challenge is very important, as the EC diffusivity D, in the space
between impermeable axons is a relatively straightforward parameter obtained from a two-compartment fit of the diffusion signal in white matter
(WM) transverse to the fiber, measured at long diffusion times with the relatively small gradients available in clinical settings.

Methods. Here we develop a new analytical approach to this problem, which for the first time displays quantitative agreement with Monte Carlo
(MC) simulations of the two-dimensional diffusion restricted by randomly packed impermeable disks whose size distribution reflects the measured
axonal diameter distribution'®. This geometry applies to quantifying white matter WM fiber integrity: Axons are modeled as parallel impermeable
cylinders (disks in the plane transverse to fiber), their packing affected by either axonal loss (random removal of the disks), or demyelination (disk
shrinkage). Fig. 1 shows the MC-simulated tortuosity A = Dy/D., with Dy the free water diffusivity, together with results of our analytical modeling.

Our key idea is in the accounting for the distribution of axon sizes. As the axonal size distribution'® has both a peak (representing many small
similar-size axons) and a long tail (a few /arge axons), we approximate the disk size distribution by two populations: “small”, ‘s’ (of the same size),
and “large”, ‘/°, with the ratio &= w//y, between their volume fractions being the only adjustable parameter characterizing the distribution.

Results. We consider the effect of small disks first, “homogenizing” at the scale exceeding their size, and then use the reduced diffusivity of
population ‘7’ to describe the further restriction to diffusion caused by rare large disks. In this way, the “small parameter” for the large disks becomes
their relatively small fraction y;. The challenge still remains to model the restriction caused by tightly packed small disks. Remarkably, we find that
the effect of small disks randomly placed in-between the large ones is well captured locally by the exact solution'' for a square lattice of disks. We
focus on the EC conductivity o(¢) assuming the EC space filled with material with 6, = 1; the EC tortuosity’ A = Dy/D. = ¢/o(¢). The openings
between small disks form a “resistor network™'?, which we treat locally as a square lattice made of “conductances” 6,=6(w,/(1 — y;)), where 6,(i) is
the exact conductivity'' of a square lattice of identical nonconducting disks with fraction . Effective medium treatment of adding large disks in the
background of o, yields 6 = o,(w/(1 — y)))-(1 — 1//1) the black curve in Fig. 1. Using this two-stage approach, our tortuosity is clearly much closer to
the MC results than that of earlier approaches5 given by 6 = ¢ and A = 1/¢ (red dashed line). In Fig. 1, we took & = 3:5 = 0.6. This corresponds to
large axons with diameter exceeding ~2um,'® contributing y;/y = &/(1+&) = 38% of the net axonal Volume =yt —1 —Q.

Demyelination shrinks both types of axons (in simulations, we chose shrmkmg of all disks by
a common factor 4 > 1). The conductivity of population ‘s” becomes 6,—6(y, /A*(1-)). The large
disks are now substituted by disks with impermeable core of radius R/A, coated by a shell between
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Discussion. The unexpectedly good agreement between theory and MC simulations even for very tight packings suggests that the most relevant
feature of the cell size distribution'® is the relative contribution & of its tail (large axons) to its bulk (small axons), with the variation of sizes within
those populations being less important. Our approach also explains the decoupling of axonal loss and demyelination in the EC diffusion: While
demyelination sharply increases the “conductance” of the tightly packed population ‘s’ leading to a sharp tortuosity drop, the axonal loss introduces
isolated conducting “pockets” in the midst of poorly conducting bulk, resulting in a very slow initial conductivity increase and, thereby, the initial
overall decrease of EC diffusivity D.«c(9)/¢ in response to the increase of ¢ (Fig. 1). The decoupling of axonal loss and demyelination can allow
one to differentiate between different kinds of WM damage. Our analytical approach extends onto the simultaneous demyelination and loss of small
and/or large axons, and can be used to quantify subtle changes in WM structure in disease using clinically available low-¢ DWI metrics.
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