

Assessment of neurochemical alterations in rats exposed to long-term alcohol treatment

Do-Wan Lee¹, Sang-Young Kim¹, Hyunseung Lee², Taehyeong Lee³, Changbum Yoo³, Jae-Hwa Kim⁴, Chi-Bong Choi⁵, Hwi-Yool Kim³, Dai-Jin Kim^{4,6}, Kwan-Soo Hong², and Bo-Young Choe¹

¹Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Seoul, Korea, Republic of; ²MRI Team, Korea Basic Science Institute, ³Department of Veterinary Surgery, Konkuk University of Korea, ⁴Department of Biomedical Science, College of Medicine, The Catholic University of Korea, ⁵Department of Veterinary Diagnostic Radiology, Dr. PET Animal Medical Center, ⁶Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea

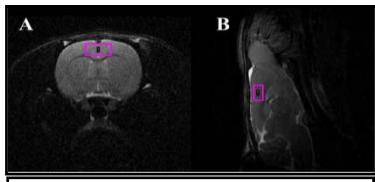


Fig. 1. T1-weighted images (A: axial, B: sagittal) of the rat brain. The rectangular boxes indicate the position of VOI (4 x 1.6 x 3 mm).

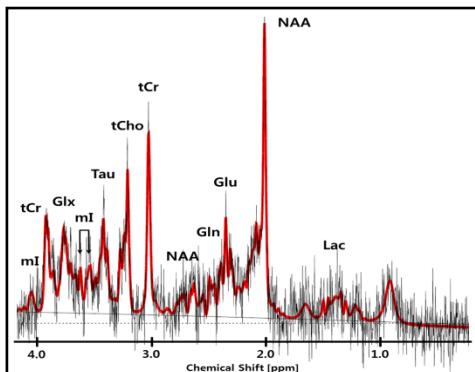


Fig. 2. Representative *in vivo* 4.7 T ¹H MRS spectrum (200 MHz) of the ethanol treated group, in the region of the frontal cortex. The original spectrum and the fitted LCModel spectrum are represented by the black and red line, respectively.

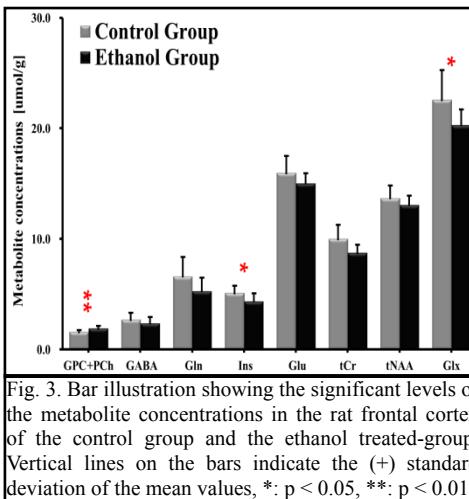


Fig. 3. Bar illustration showing the significant levels of the metabolite concentrations in the rat frontal cortex of the control group and the ethanol treated-group. Vertical lines on the bars indicate the (+) standard deviation of the mean values, *: p < 0.05, **: p < 0.01

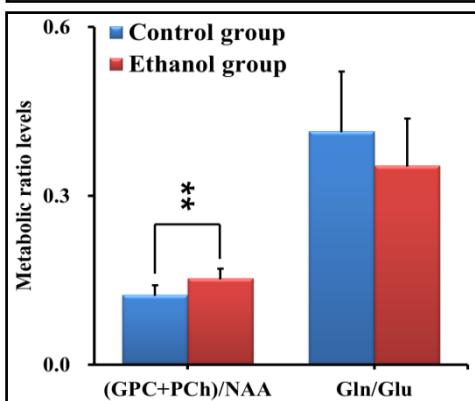


Fig. 4. Bar illustration shows that the (GPC+PCh)/NAA and Gln/Glu ratio levels were significant different between the control group and the ethanol group. Vertical lines on the bars indicate the (+) standard deviation of the mean values, **: p < 0.01

mechanism in the frontal cortex of the long-term alcohol exposure adolescent rats [5]. Therefore, increased GPC+PCh concentrations and (GPC+PCh)/NAA ratio levels of the frontal cortex might be utilized as the key marker in chronic adolescent alcohol intoxication.

Acknowledgement: This study was supported by a grant (2010-0008096) from the Basic Science Research Programs through the National Research Foundation (NRF) and the program of Basic Atomic Energy Research Institute (BAERI) which is a part of the Nuclear R&D Programs funded by the Ministry of Education, Science & Technology (MEST) (2009-0078390) of Korea. This work was also supported by the use of an animal MRI system at Korea Basic Science Institute (KBSI).

References: [1] Nasrallah NA, Wang TW, et al., 2009;106:17600-17604. [2] Barron S, White A, et al. Alcohol Clin Exp Res 2005;29:1720-1725.

[3] De Bellis MD, Clark DB, et al., Am J Psychiat 2000;157:737-744.

[5] Lee H, Holburn GH, et al., J Magn Reson Imaging 2003;18:147-151.

[4] Englund MM, Egeland B, et al., 2008; 103: 23-35.