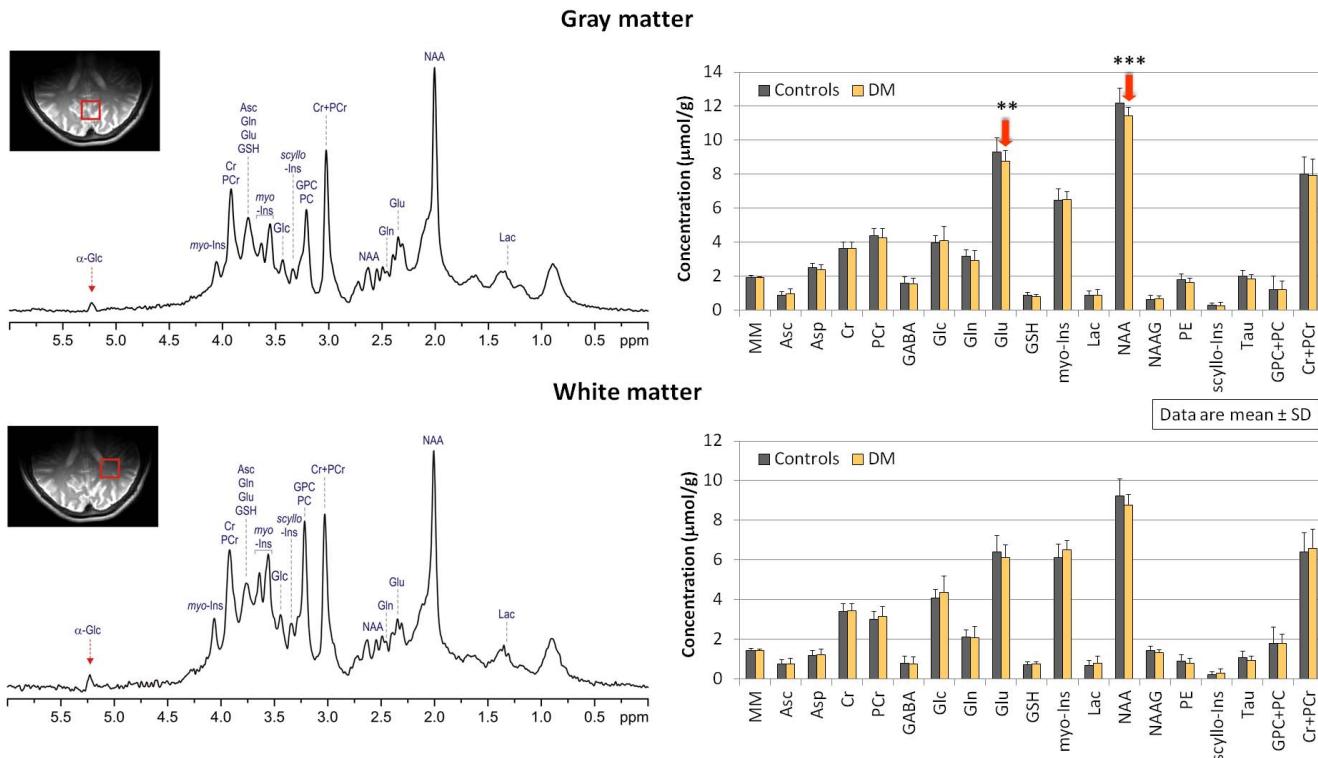


Neurochemical profile of Patients with Type 1 Diabetes Measured by ^1H -MRS at 4 T

Silvia Mangia¹, Anjali Kumar², Amir Moheet², Lynn Eberly³, Rachel Roberts³, Elizabeth Sequist², and Ivan Tkac¹

¹CMRR - Dept. of Radiology, University of Minnesota, Minneapolis, Minnesota, United States, ²Dept. of Medicine, University of Minnesota, Minneapolis, Minnesota, United States, ³Div. of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States

Introduction


Decreased N-acetylaspartate (neuronal marker) and increased *myo*-inositol (osmolyte) have been observed in subjects with type 1 diabetes (T1DM) using ^1H MRS [1,2]. However, the impact of the disease on a comprehensive neurochemical profile has not been reported yet. Our previous ^1H MRS studies on T1DM were focused exclusively on the assessment of brain glucose levels [3-5]. This study aimed at reanalyzing our previously acquired data to investigate differences between neurochemical profiles of T1DM subjects relative healthy controls of similar age.

Methods

^1H MRS data from a group of 14 patients with long-standing T1DM (>10 years) and a group of 32 healthy controls studied during a hyperglycemic clamp ($[\text{Glc}]_{\text{plasma}} = 300 \pm 15 \text{ mg/dl}$) clamp with somatostatin and insulin were selected from our database. Spectra were acquired in an interleaved manner from 16-ml VOIs located in gray matter-rich occipital cortex (GM) and periventricular white matter-rich tissue (WM) using ultra-short echo-time STEAM sequence ($\text{TE} = 6 \text{ ms}$, $\text{TR} = 5 \text{ s}$) with VAPOR water suppression [6]. Metabolite concentrations were quantified using LCModel [7] with the spectrum of fast relaxing macromolecules included in basis set. Unsuppressed water signal was used as internal reference assuming 80% and 72% brain water content in GM and WM, respectively.

Results and discussion

Seventeen brain metabolites were consistently quantified from GM and WM ^1H MR spectra with Cramer-Rao lower bound CRLB $< 10\%$ for Cr, PCr, Glc, Gln, Glu, *myo*-Ins, NAA, GPC+PC, Cr+PCr and with CRLB $< 30\%$ for remaining weakly represented metabolites (representative spectra from a subject with T1DM are shown in the figure). Robustness of metabolite quantification was demonstrated by small inter-subject coefficient of variation ($\text{CV} < 6\%$) of [Cr+PCr] both in GM and WM. Differences in [Cr+PCr] between T1DM patients and controls were not observed ($< 2\%$, $p > 0.3$). Of all quantified metabolites in both brain regions, lower levels of NAA (6%, $p < 0.005$) and glutamate (6%, $p < 0.05$) were observed in GM of T1DM patients as compared to controls. A trend ($p = 0.064$) for decreased [NAA] in WM of T1DM patients was also observed. No difference was found in [Glc]_{brain} between T1DM and controls under the same $[\text{Glc}]_{\text{plasma}}$ levels. In addition, [Glc]_{brain} data demonstrate a uniform distribution of glucose within these brain regions. In conclusion, the small, but significant, decreases of NAA and Glu levels in gray matter-rich occipital cortex might indicate a partial neuronal loss or dysfunction as a consequence of long-term T1DM. Effects of T1DM on all other brain metabolites detectable by ^1H MRS at 4T were not observed.

References: References [1] Heikkilä et al. *Diabetologia* 52:534 (2009) [2] Northam et al. *Diabetes Care* 32:445 (2009) [3] Sequist et al. *Diabetes* 50:2203 (2001) [4] Sequist et al. *Metabolism* 54:1008 (2005) [5] Criego et al. *J Neurosci Res* 82:525 (2005) [6] Tkac et al. *App Magn Reson* 29:139 (2005) [7] Provencher *MRM* 90:672 (1993). **Acknowledgments:** NIH Grants BTRR - P41 RR008079, P30 NS057091, NIH R01 DK62440, S10 RR023730, S10 RR027290.