

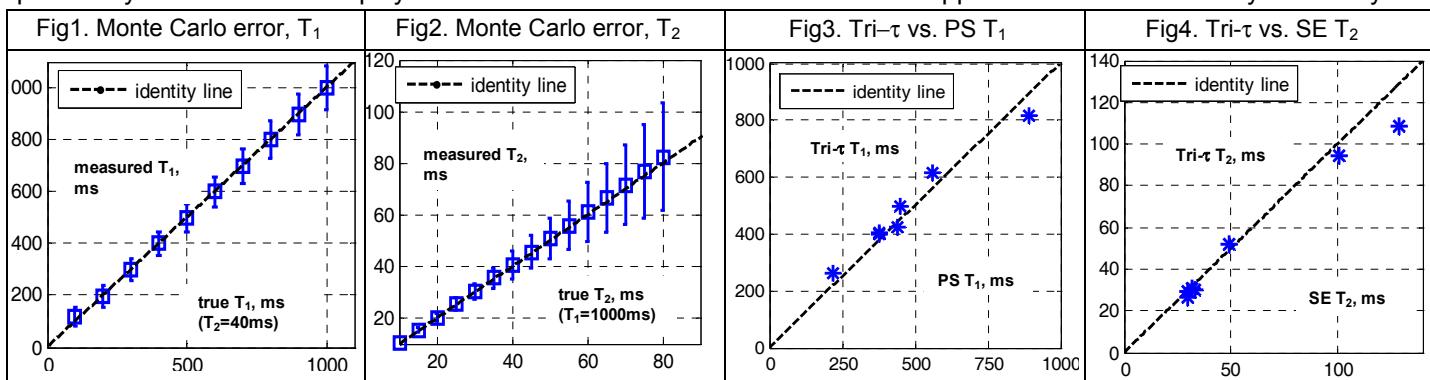
Measuring T₁ and T₂ and proton density in 3 acquisitions: the Tri- τ method

Guan Wang^{1,2}, AbdEl-Monem El-Sharkawy¹, William A. Edelstein¹, Michael Schär^{1,3}, and Paul A. Bottomley¹

¹Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States, ²Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States, ³Philips Healthcare, Cleveland, OH, United States

INTRODUCTION. T₁ and T₂ are typically determined by separate partial saturation (PS) or inversion recovery and spin-echo (SE) experiments. We propose a new method to measure both T₁ and T₂ in just three acquisitions, without using echoes or varying the repetition period T_R. Instead, T₂ is measured by varying the pulse length (τ) of an adiabatic B₁-independent rotation (BIR-4) pulse in two of the acquisitions, based on the fact that long adiabatic excitation pulses are prone to T₂ decay [1,2]. T₁ is determined by varying the flip-angle in two acquisitions, analogous to the dual-angle method [3]. Thus, this 3-acquisition “Tri- τ ” method employs an α hard pulse excitation, a β short-duration BIR-4 pulse, and a β long-duration BIR4 excitation. The method is validated with T₁ and T₂ SE and PS measurements on phantoms.

THEORY. Because during BIR-4 pulses the magnetization spends time in the transverse plane and is subject to T₂ decay [1], T₂ can be measured from two acquisitions employing long and short BIR-4 pulses of duration τ_3 , and τ_2 , essentially independent of flip-angle β [2]. Adding a third acquisition with a different flip-angle α yields T₁ provided the sequences are applied with a (single) T_R \leq T₁ to permit adequate T₁ attenuation and resolution. Thus the Tri- τ method acquires: a first signal S₁ with a conventional short ($\tau \ll T_2$) α RF excitation pulse; a second signal S₂ with a β BIR-4 pulse of duration τ_2 ; and a third signal S₃ with a β BIR-4 pulse of length $\tau_3 = 2\tau_2$. With $E_1 = \exp(-T_R/T_1)$, the three steady-state signals are: $S_1 = [M_0(1-E_1)\sin\alpha]/(1-E_1\cos\alpha)$; $S_2 = [M_0(1-E_1)E_{p2}^{xy}\sin\beta]/(1-\cos\beta E_1 E_{p2}^z)$ [3]; $S_3 = [M_0(1-E_1)E_{p3}^{xy}\sin\beta]/(1-\cos\beta E_1 E_{p3}^z)$ with E_p^{xy} and E_p^z as the transverse and longitudinal attenuation factors. From numerical simulations with practical BIR-4 pulses and $\beta < 80^\circ$, $E_p^{xy} = E_p^z = E_p = \exp(-g \cdot \tau/T_2)$, $E_{p3} = (E_{p2})^2$, and the equation set simplifies to a quadratic with solutions of E_{p2} and E_1 , yielding $T_1 = -T_R/\ln(E_1)$ and $T_2 = -(g \cdot \tau_2)/\ln(E_{p2})$, where g is a constant reflecting the time spent by the magnetization in the transverse plane.


METHODS. Numerical simulations based on the Bloch equations were performed with B₁=20 μ T, f_{max}=15kHz at 3T. BIR-4 pulse lengths were varied over 5 \leq τ \leq 40ms to determine g as a function of T₁, T₂ and flip-angle. Monte-Carlo simulations were performed to determine the accuracy of the Tri- τ method at signal-to-noise ratio (SNR)=50, with experimental values of $\tau_3 = 2\tau_2 = 20$ ms, T_R=0.3s.

The Tri- τ method was validated experimentally in ¹H NMR studies of 6 CuSO₄-doped gel phantoms on a Philips 3T Achieva scanner with 219 \leq T₁ \leq 890ms and 31 \leq T₂ \leq 129ms, as determined by standard SE and PS methods. S₁ was acquired with $\alpha = 15^\circ$ 75 μ s hard pulse, S₂ and S₃ are excited by 60° BIR4 pulses.

RESULTS. The Bloch simulations yielded g=0.81 for T₁=1s, 14 \leq T₂ \leq 120ms and $\theta < 80^\circ$, varying less than 1.5% for 120 \leq T₁ \leq 1000ms. The Monte Carlo simulations of the Tri- τ method showed that T₂ could be measured with a mean error of -10% to 2% for T₂ \leq 80ms and 0.1 \leq T₁ \leq 1s (Fig1). The error in T₁ was $\leq 1\% \pm 15\%$ (SD) for 0.3 \leq T₁ \leq 1s, 30 \leq T₂ \leq 130ms (Fig 2).

T₂ and T₁ values measured from the Tri- τ experiments on phantoms are compared with SE and PS T₁ and T₂ values in Figs 3, 4. The results show good agreement for all phantoms.

DISCUSSION. Because the proton density derives directly from the fully-relaxed signal, the Tri- τ method offers the potential for obtaining all of the T₂, T₁ and signal density information with just three acquisitions—arguably the minimum possible. The caveat is that the method requires accurate setting and knowledge of the flip-angles. This new method can potentially save time and simplify relaxation measurements. Extension of the approach to MRI is currently underway.

1. El-Sharkawy AE, et al. Magn Reson Med 2009; 61:785-795. 2. Wang G, et al. Proc. ISMRM 2011; 19: 2174.

3. Bottomley PA, et al. J Magn Reson B, 104 (1994);159-1671. This work is supported by NIH grant R01 EB7829.