

³¹P MR spectroscopic imaging with nuclear Overhauser enhancement at 7T in the human prostate

Miriam W Lagemaat¹, Marnix C Maas¹, Thiele Kobus¹, Andreas K Bitz^{2,3}, Mark J van Uden¹, Stephan Orzada^{2,3}, Arend Heerschap¹, and Tom W J Scheenen¹
¹Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands, ²Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany,
³Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany

Introduction - At a field strength of 7T, the increased spectral resolution of ³¹P enables detection of the separate resonances of phosphocholine (PC) and phosphoethanolamine (PE) in the human prostate [1]. The levels of these metabolites, together with those of glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE), may be helpful in prostate cancer characterization [2]. To achieve 3D ³¹P MRSI with relevant spatial resolution in a clinically acceptable measurement time, the repetition time of the sequence should be optimized and possible signal enhancement strategies should be employed. In this study we assessed T₁ relaxation times of ³¹P metabolites in the human prostate and evaluated the effect of nuclear Overhauser enhancement (NOE) on ³¹P MRSI detection sensitivity at 7T.

Methods - Two healthy volunteers (32y and 37y) were measured on a 7T whole body MR system (Magnetom 7T, Siemens, Erlangen). A ³¹P T_X/R_X endorectal coil tuned to 120.3 MHz was used in combination with a ¹H T_X/R_X 8-channel body array coil [3]. 3D phasemap shimming was used to optimize the B₀ homogeneity in the prostate. A B₁⁺-phase shimming algorithm was employed to maximize ¹H phase coherence in the prostate to allow efficient continuous wave irradiation for NOE. Transversal T₂-weighted fast spin echo images (TR=3s, TE=71ms) were recorded to provide an anatomical background for 3D ³¹P spectroscopic imaging. For T₁ measurements (N=1) a progressive saturation ³¹P MRSI sequence with a 5.12 ms adiabatic tanh12 90° pulse ($\gamma B_1=670\text{Hz}$) was used with TRs that ranged from 300ms to 2.3s (nominal voxel size: 20x20x20mm³). In the other volunteer 3D ³¹P MRSI with 8ms BIR-4 45° RF pulses ($\gamma B_1=960\text{Hz}$) was performed twice, with a nominal voxel size of 12.5x12.5x12.5mm³ (TR=1500ms, TA=11.4 minutes). In the second scan the proton spins of water were saturated during the 1.5s TR (except during 204ms signal acquisition) using low-power continuous wave irradiation ($\gamma B_1=20\text{Hz}$) to assess the NOE. All measurements were performed within SAR safety limits. Fitted peak integrals were used for quantification of the measurements.

Results and discussion - The metabolites of which a reliable fit could be obtained in the consecutive measurements of the progressive saturation experiment were used to calculate T₁ values (table 1 and fig. 1). GPC and GPE signals were very low or not present in the prostate spectra, even with NOE (fig. 2). Since two peaks resonated with some overlap in the chemical shift range of inorganic phosphate (Pi) these could not be reliably fitted. The T₁ relaxation times of phosphocreatine (PCr) and γ ATP in prostate at 7T as obtained in this study were comparable to those reported for human brain at the same field strength [4]. Another 7T study reported longer γ ATP T₁ times in human muscle, but also a comparable PCr T₁ time [5]. The measured T₁ of PE in prostate was slightly shorter than in human brain. No separate T₁ values for PC at 7T have been reported before. The Ernst angle for the calculated T₁ values of PE and PC at a TR of 1500 ms were 51.5° and 40.1°, hence the choice of an adiabatic excitation flip angle of 45°. The signal-to-noise of PC at this TR was still good, as can be seen in fig. 2. Compared to reported numbers for prostate at 1.5T [6], all measured ³¹P T₁ times were increased at 7T. The differences in T₁ relaxation times between the left and right muscle surrounding the prostate may result from B₀ inhomogeneity differences outside the prostate, leading to less accurate fitting of the peak integrals. The low signal intensities of GPC and GPE were in accordance with in vitro measurements of normal prostate tissue [7] and benign prostate tissue [2], however in the latter study even smaller PC concentrations were reported.

Well-resolved spectra were obtained throughout the prostate and surrounding tissue with the TR=1.5s ³¹P MRSI sequence with and without NOE (fig. 2 and 3). In the metabolite map of the PE/PCr ratio in fig. 4 the differences between prostate and surrounding tissue are clearly visible. A positive NOE effect was observed for PE, PC and PCr in the prostate (table 1, fig. 2). This is in line with previously published NOE data from ³¹P metabolites in brain at 7T [4]. Since both metabolites of interest for studying prostate cancer, e.g. PE and PC, benefit from NOE, it might be possible to increase the MRSI resolution without changing the total acquisition time. This has to be investigated in patients. Also other signal enhancement techniques, e.g. polarization transfer, should be explored to increase signal intensity.

Conclusion - T₁ relaxation times for ³¹P at 7T were measured in the healthy human prostate. By choosing an appropriate TR of 1500ms in combination with an adiabatic excitation pulse of 45° and irradiating the water resonance to obtain a positive NOE effect, ³¹P MRSI of the prostate is possible with a relevant spatial resolution in a clinically acceptable measurement time.

References [1] Kobus et al, ISMRM (2011), abstract 3057 [2] Swanson et al, MRM 60:33-40(2008) [3] Orzada et al, ISMRM (2009), abstract 2999 [4] Lei et al, MRM 49:199-205(2003) [5] Bogner et al, MRM 62:574-582(2009) [6] Thomas et al, JMR 99:377-386(1992) [7] Cornel et al. J Urol. 150(6):2019-2024(1993)

Acknowledgement ERC Grant agreement n° [243115]

	PE	PC	PCr	γ ATP
T ₁ prostate (s)	3.16 ± 0.86 *	5.59 ± 2.67 *	3.51 ± 0.54	1.27 ± 0.10
T ₁ smooth muscle (s)	-	-	R: 2.09 ± 0.22 L: 2.4 ± 0.18	R: 0.97 ± 0.15 L: 1.51 ± 0.35
NOE prostate (%)	38 ± 7	22 ± 28	18 ± 10	-0.2 ± 7

Table 1: Apparent T₁ (s) and NOE (%) of ³¹P metabolites in prostate and surrounding muscle tissue at 7T.

*: no signal at TR=300ms.

Fig. 1: T₁ recovery curves of ³¹P metabolites in prostate.

Fig. 2: ³¹P spectra (TR=1.5s, TA=11.40min) of the human prostate with NOE (A) and without NOE (B).

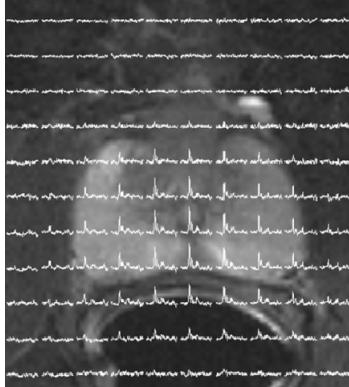
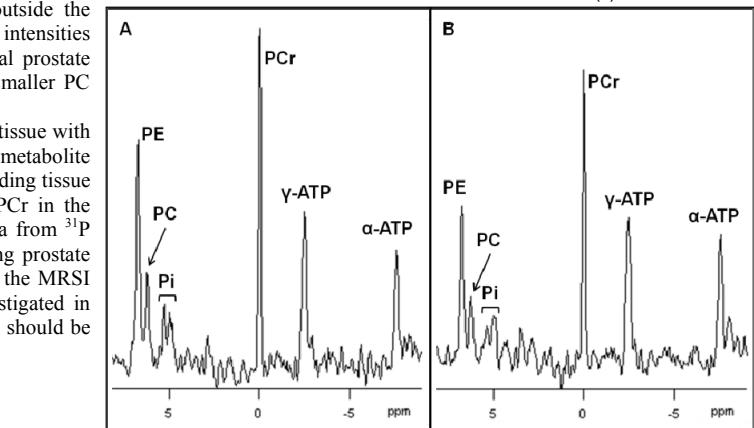
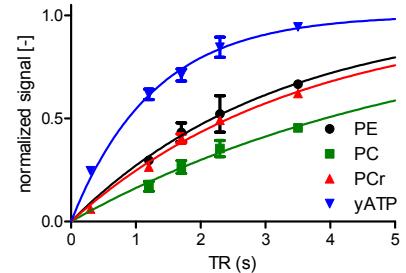




Fig. 3: ³¹P spectral map (2-8.5ppm) with NOE of the prostate midgland on top of a T2W-image at 7T (volunteer 2).

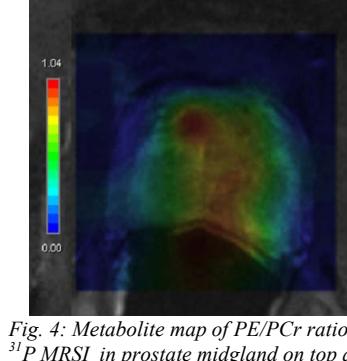


Fig. 4: Metabolite map of PE/PCr ratio from ³¹P MRSI in prostate midgland on top of a T2W-image at 7T (volunteer 1).