

Distinguishing GABA from lysine *in vitro* and *in vivo* by 2D localized correlated spectroscopy

Luke Yuan-Je Wang^{1,2}, Hui Jun Vicky Liao², Ana K. Cadena², Saadallah Ramadan³, Carolyn Mountford^{2,3}, and Alexander P. Lin²

¹Department of Anesthesiology, Children's Hospital Boston, Boston, MA, United States, ²Department of Radiology, Brigham and Women's Hospital, Boston, MA, United States, ³Faculty of Health, The University of Newcastle, Newcastle, New South Wales, Australia

Introduction: The coupled protons on GABA carbons 3 and 4 resonate around ($F_2 = 2.0$ ppm, $F_1 = 3.0$ ppm) in 2D correlated spectroscopy (COSY) [1]. The unequivocal assignment of this cross-peak to GABA *in vivo*, however, is complicated by the suspicion of macromolecules co-resonating near these frequencies, on the basis of NMR experiments using guinea pig brain extracts containing thymosin $\beta 4$ [2], a lysine-rich protein [3]. Given the structural similarities between the amine end of GABA, and the amine side chain of lysine, macromolecule co-resonance may be due to lysine side chains in proteins [2]. As such, we tested whether GABA and lysine could be differentiated *in vitro* and *in vivo* by 2D localized COSY at 3T.

Methods: Expected chemical shifts were obtained via simulation (www.nmrdb.org) [4]. Solutions of 10 mM lysine, 10 mM GABA, and a mixture of both were made in phosphate-buffered saline; the pH was adjusted to 7.4. Each phantom also contained 10 mM creatine (Cr) as a chemical shift reference. Water-suppressed localized COSY data from a $3 \times 3 \times 3$ cm³ voxel were obtained on a Siemens Tim-Trio (VB17A) 3T scanner, using a 12-channel head coil. For *in vivo* data, one of the authors was scanned on a Siemens Tim-Vario (VB17A) 3T magnet with a 32-channel head coil, as previously described [5]. A $3 \times 3 \times 3$ cm³ voxel was centered on the posterior cingulate cortex. Parameters for phantom and human 2D localized COSY were: TR = 1500 ms, minimal TE = 30 ms, $\Delta t_1 = 0.8$ ms, and 8 averages each of 64 increments. Total scan time was approximately 12 minutes. Windowing, zero-filling, Fourier transformation, and peak volume measurements were facilitated with Felix 2007 (Felix NMR, Inc., San Diego, CA).

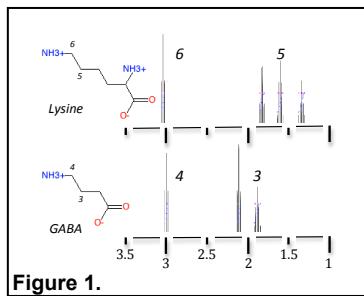


Figure 1.

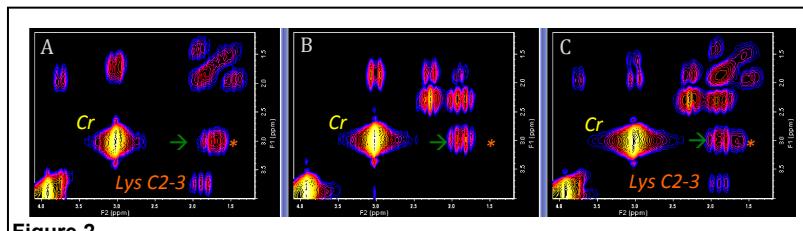


Figure 2.

chemical shift is almost identical to that of the GABA-C4 protons. In contrast, the protons on lysine-C5 resonate around 1.6 ppm, whereas those on GABA-C3 resonate at a higher frequency near 1.9 ppm due to the

deshielding effect of the closer carboxyl group.

In a pure lysine phantom (Figure 2A), the lysine-C5-6 cross-peak lies, as expected, adjacent to an orange asterisk set at ($F_2 = 1.5$, $F_1 = 3.0$), but far from the green arrow indicating where the GABA-C3-4 cross-peak would be. In a GABA phantom, the more deshielded GABA-C3-4 cross-peak is evident beside this arrow (Figure 2B). In a phantom containing both molecules, Figure 2C shows the separation of these cross-peaks along the F_2 dimension.

To test this separation *in vivo*, spectra from a healthy human brain was obtained (Figure 3A). The region inside the white box was magnified in Figure 3B, confirming a separate, putative GABA-C3-4 cross-peak along F_2 (green arrow). Of note, the lysine-specific cross-peak associated with the protons on carbons 2 and 3 (Figure 2C) was not detected (Figure 3B). The peak volume ratio of this putative GABA cross-peak to that of glutamate plus glutamine (Glx) was 16%.

Discussion: Specific assignment of the GABA-C3-4 cross-peak in 2D COSY has been inhibited by concerns over possible contamination from co-resonating macromolecules. Lysine residues have been reported to represent a possible source of this co-resonance. We have shown here the potential for 2D localized COSY to separate the lysine-C5-6 and GABA-C3-4 cross-peaks, resulting in a GABA:Glx ratio comparable to reported values [reviewed in 6]. Interestingly, we also noted the lack of a lysine-C2-3 cross-peak *in vivo* (Figures 2C & 3B), and question whether lysine-containing macromolecules are, in fact, MR-visible in living tissue. If not, the cross-peak resonating nearby may represent an entirely different chemical.

A limitation is that molecules formed by bonding to the carboxyl end of GABA, such as homocarnosine, will still possess almost identical proton chemical shifts near the amine end; however, the clinical relevance of such molecules relative to GABA remains uncertain. If this assignment is correct and distinctive, it would represent an important finding; and further studies on its reproducibility and sensitivity to known or experimentally-induced GABA changes *in vivo* would be warranted.

References:

1. Thomas MA, Hattori N, Umeda M, Sawada T, Naruse S. Evaluation of two-dimensional L-COSY and JPRESS using a 3 T MRI scanner: From phantoms to human brain *in vivo*. *NMR Biomed* 2003;16(5):245-51.
2. Kauppinen RA, Niissinen T, Karkkainen AM, Pirttila TR, Palvimo J, Kokko H, Williams SR. Detection of thymosin beta 4 *in situ* in a guinea pig cerebral cortex preparation using ¹H NMR spectroscopy. *J Biol Chem* 1992;267(14):9905-10.
3. Gondo H, Kudo J, White JW, Barr C, Selvanayagam P, Saunders GF. Differential expression of the human thymosin-beta 4 gene in lymphocytes, macrophages, and granulocytes. *J Immunol* 1987;139(11):3840-8.
4. Banfi D, Patiny L. www.nmrdb.org: Resurrecting and processing NMR spectra on-line. *Chimia* 2008;62(4):280-1.
5. Ramadan S, Andronesi OC, Stanwell P, Lin AP, Sorensen AG, Mountford CE. Use of *in vivo* two-dimensional MR spectroscopy to compare the biochemistry of the human brain to that of glioblastoma. *Radiology* 2011;259(2):540-9.
6. Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. *NMR Biomed* 2000;13(3):129-53.

Results: The structures and simulated 1D spectra for GABA and lysine at physiological pH are shown in Figure 1. The lysine-C6 protons are geminal to the side chain amine; consequently, their

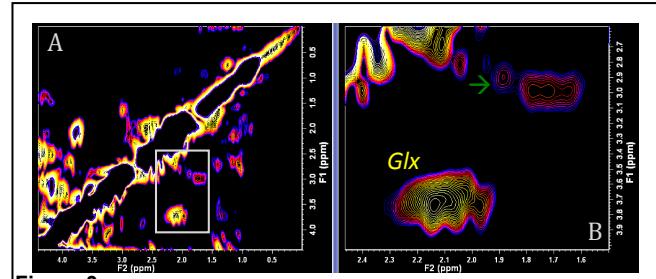


Figure 3.