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Introduction: The coupled protons on GABA carbons 3 and 4 resonate around (F2 = 2.0 ppm, F1 = 3.0 ppm) in 2D correlated spectroscopy (COSY) [1]. 
The unequivocal assignment of this cross-peak to GABA in vivo, however, is complicated by the suspicion of macromolecules co-resonating near these 
frequencies, on the basis of NMR experiments using guinea pig brain extracts containing thymosin β4 [2], a lysine-rich protein [3]. Given the structural 
similarities between the amine end of GABA, and the amine side chain of lysine, macromolecule co-resonance may be due to lysine side chains in 
proteins [2]. As such, we tested whether GABA and lysine could be differentiated in vitro and in vivo by 2D localized COSY at 3T. 
 
Methods: Expected chemical shifts were obtained via simulation (www.nmrdb.org) [4]. Solutions of 10 mM lysine, 10 mM GABA, and a mixture of both 
were made in phosphate-buffered saline; the pH was adjusted to 7.4. Each phantom also contained 10 mM creatine (Cr) as a chemical shift reference. 
Water-suppressed localized COSY data from a 3 x 3 x 3 cm3 voxel were obtained on a Siemens Tim-Trio (VB17A) 3T scanner, using a 12-channel head 
coil. For in vivo data, one of the authors was scanned on a Siemens Tim-Verio (VB17A) 3T magnet with a 32-channel head coil, as previously described 
[5]. A 3 x 3 x 3 cm3 voxel was centered on the posterior cingulate cortex. Parameters for phantom and human 2D localized COSY were: TR = 1500 ms, 
minimal TE = 30 ms, ∆t1 = 0.8 ms, and 8 averages each of 64 increments. Total scan time was approximately 12 minutes. Windowing, zero-filling, 
Fourier transformation, and peak volume measurements were facilitated with Felix 2007 (Felix NMR, Inc., San Diego, CA). 

 
Results: The structures 
and simulated 1D 
spectra for GABA and 
lysine at physiological 
pH are shown in Figure 
1. The lysine-C6 
protons are geminal to 
the side chain amine; 
consequently, their 

chemical shift is almost identical to that of the GABA-C4 protons. In contrast, the protons on lysine-C5 resonate 
around 1.6 ppm, whereas those on GABA-C3 resonate at a higher frequency near 1.9 ppm due to the 

deshielding effect of the closer carboxyl group. 
In a pure lysine phantom (Figure 2A), the lysine-C5-6 cross-peak lies, 

as expected, adjacent to an orange asterisk set at (F2 = 1.5, F1 = 3.0), but far 
from the green arrow indicating where the GABA-C3-4 cross-peak would be. In 
a GABA phantom, the more deshielded GABA-C3-4 cross-peak is evident 
beside this arrow (Figure 2B). In a phantom containing both molecules, Figure 
2C shows the separation of these cross-peaks along the F2 dimension. 

To test this separation in vivo, spectra from a healthy human brain 
was obtained (Figure 3A). The region inside the white box was magnified in 
Figure 3B, confirming a separate, putative GABA-C3-4 cross-peak along F2 
(green arrow). Of note, the lysine-specific cross-peak associated with the 
protons on carbons 2 and 3 (Figure 2C) was not detected (Figure 3B). The peak 
volume ratio of this putative GABA cross-peak to that of glutamate plus 
glutamine (Glx) was 16%. 
 
Discussion: Specific assignment of the GABA-C3-4 cross-peak in 2D COSY has been inhibited by concerns over possible contamination from co-
resonating macromolecules. Lysine residues have been reported to represent a possible source of this co-resonance. We have shown here the potential 
for 2D localized COSY to separate the lysine-C5-6 and GABA-C3-4 cross-peaks, resulting in a GABA:Glx ratio comparable to reported values [reviewed 
in 6]. Interestingly, we also noted the lack of a lysine-C2-3 cross-peak in vivo (Figures 2C & 3B), and question whether lysine-containing 
macromolecules are, in fact, MR-visible in living tissue. If not, the cross-peak resonating nearby may represent an entirely different chemical. 

A limitation is that molecules formed by bonding to the carboxyl end of GABA, such as homocarnosine, will still possess almost identical 
proton chemical shifts near the amine end; however, the clinical relevance of such molecules relative to GABA remains uncertain. If this assignment is 
correct and distinctive, it would represent an important finding; and further studies on its reproducibility and sensitivity to known or experimentally-
induced GABA changes in vivo would be warranted. 
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