Quantitative mapping of the CI/Na⁺ concentration ratio using a double resonant surface coil

Sebastian Baier¹, Stefan Kirsch¹, Friedrich Wetterling¹, Laurent Tritschler², Patrick Heiler¹, and Lothar R Schad¹

¹Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany, ²Department of Neurology, Heidelberg University, Mannheim, Germany

Introduction

²³Na magnetic resonance imaging (MRI) has been shown to be an important modality in clinical diagnosis (in general [1] and in particular for the distinction between dead and vital cells after stroke [2].) Recent studies showed that ³⁵Cl can provide additional physiological information, i.e. onset of blood-brain barrier breakdown in focal infarction [3]. However, non-proton MRI suffers from low signal-to-noise ratio (SNR) due to reduced gyromagnetic ratio, short transversal relaxation times and low *in vivo* concentration. Therefore, x-nuclei MRI demands for optimal SNR efficiency. Surface coils enable high local SNR but the inhomogeneous coil sensitivity profile hampers quantification of nuclei concentrations. This work presents a method which uses a double resonant ³⁵Cl-²³Na surface coil for quantitative mapping of the Cl'/Na⁺ concentration ratio. The ³⁵Cl and the ²³Na signal were measured with the same tuneable loop element. Since the typical sample dimensions are much smaller than λ /10, we expect approximately the same B₁ profile for ³⁵Cl and ²³Na. Therefore, division of the ³⁵Cl images by the ²³Na images should yield ratio images which are almost free from the coil profile. Furthermore, using a reference solution with known ion concentration enables calculation of Cl'/Na⁺ concentration ratio maps.

Methods

Sodium and chlorine MRI was done with a double resonant (39.2 MHz / 105.9 MHz) 35 Cl- 23 Na surface coil [4]. Measurements were performed on a 9.4 T Biospec 94/20 USR (Bruker, Germany) small animal system with 740 mT/m gradients. 7 Phantoms were measured. Each phantom consisted of 3 vials: 2 reference vials with 6% NaCl solution (Cl⁻/Na⁺ concentration ratio 1) and 1 sample vial with 1% NaCl solution and an amount of KCl / NaH₂PO₄ to match a Cl⁻/Na⁺ concentration ratio of 3, 2.57, 2, 1.78, 1, 0.625 and 0.455, respectively. Imaging was done by a Hanning weighted 3D CSI pulse sequence. 23 Na and 35 Cl imaging was performed with identical geometrical parameters: FOV = (35×35×30) mm³, spatial resolution = (1×1×3) mm³. Other parameters were set to: repetition time = 100 ms, number of repetitions / encoding steps = 30720 (23 Na) and 40960 (35 Cl), total acquisition time = 51 min (23 Na) and 68 min (35 Cl), duration RF block pulse (23 Na and 35 Cl) = 20 μ s, duration of the phase encoding gradient = 410 μ s (23 Na) and 550 μ s (35 Cl), acquisition delay = 689 μ s (23 Na) and 549 μ s (35 Cl). The amplitude of the RF block pulse was determined experimentally in previous scans to match the Ernst angle.

Results & Discussion

Figure 1 shows the 23 Na, 35 Cl images and the Cl 7 Na $^{+}$ concentration ratio map. The color code within the sample is in good agreement with the known ratio of 1.78:1. Figure 2 shows the Cl 7 Na $^{+}$ concentration ratio determined from ROIs indicated in Figure 1 and measured on different samples along 8 slices in B₀ direction. The Cl 7 Na $^{+}$ concentration ratio shows acceptable consistency over 8 slices for Cl 7 Na $^{+}$ < 2.57:1. The provided method allows determination of the Cl 7 Na $^{+}$ concentration ratio in ionic solutions by means of MRI. Figure 3 shows first results of an ongoing *in vivo* study on rats with a middle cerebral artery (MCA0) stroke. The images show elevated Na $^{+}$ and Cl 7 concentrations in the right hemisphere of the brain three weeks after occlusion. The normalized divided image indicates a stronger elevation of the Na $^{+}$ concentration compared to Cl 7 in the area of infarction, indicated by the white arrow. However, further experiments are necessary to ensure statistical significance. In future, the *in vivo* mapping of the Cl 7 Na $^{+}$ concentration ratio could be used to gain more insight into ionic regulatory processes.

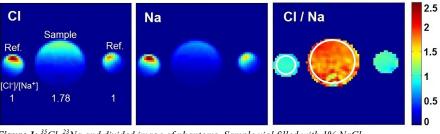
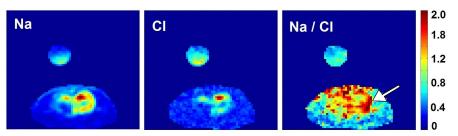



Figure 1: ³⁵Cl, ²³Na and divided image of phantoms. Sample vial filled with 1% NaCl and 1% KCl yielding an ion concentration ratio [Cl]/[Na⁺] of 1.78:1.

Figure 3: ²³Na, ³⁵Cl, and divided image of MCA0 rat 3 weeks after stroke. Reference vial filled with 1% NaCl. White arrow indicates differences in the concentration ratio map.

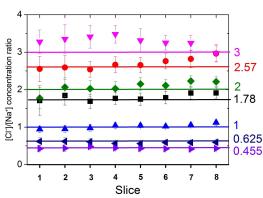


Figure 2: Known CI/Na⁺ concentration ratio of the samples (solid lines) and measured concentration ratios derived from ROIs within the concentration ratio map (compare Fig.1).

References

- [1] Nagel et al., Magn. Reson. Med., 62:1565-1573 (2009).
- [3] Kirsch et al., NMR in BioMed, 23:592-600 (2010).
- [2] Thulborn et al., Neuroimag Clin N AM, 40:639-653 (2005).
- [4] Wetterling et al., in Proc. ISMRM 2011 Montreal, 3501.