Chlorine (35Cl) Magnetic Resonance Imaging of the Human Brain and Muscle

Armin M. Nagel¹, Florian M. Meise¹, Marc-André Weber^{2,3}, Karin Jurkat-Rott⁴, Frank Lehmann-Horn⁴, Michael Bock¹, Wolfhard Semmler¹, and Reiner Umathum¹ Dept. of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany, ²University Hospital of Heidelberg, Heidelberg, Germany, ³Dept. of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany, ⁴Division of Neurophysiology, Ulm University, Ulm, Germany

Introduction

Chlorine (Cl⁻) is the most important anion in the human body and is involved in many physiological processes. It plays a crucial role in controlling the ionic composition of the cytoplasm and the volume of cells [1]. In skeletal muscle, Cl⁻ exhibits a passive distribution in response to the resting membrane potential. This results from the very high Cl⁻ conductance, making up ~80% of the total membrane conductance at rest [2]. Thus, the resting potential of muscle cells can be calculated from the intra- and extracellular Cl⁻ concentration. Contrary to sodium (²³Na) magnetic resonance imaging (MRI), which is more frequently used in clinical research, to date ³⁵Cl-MRI has only been applied for small animal imaging [3]. In this work, we implemented ³⁵Cl-MRI and evaluated its feasibility for high field (7 T) imaging.

Methods

³⁵Cl-MRI was conducted on a 7 T whole body MR system (Magnetom 7 T, Siemens Healthcare, Erlangen, Germany) using a double-resonant (³⁵Cl/ ¹H), quadrature birdcage coil (inner coil diameter: 22 cm) (QED, Mayfield Village, Ohio, USA). The monitoring of the specific absorption rate (SAR) on the ³⁵Cl frequency (29.15 MHz) was implemented by Siemens Healthcare (Erlangen, Germany). To compare relaxation times, ²³Na-MRI was performed using a double resonant quadrature birdcage coil (Rapid Biomed GmbH, Rimpar, Germany).

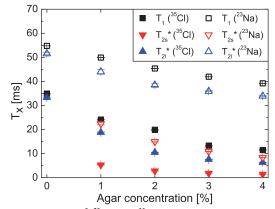
<u>Phantom-study</u> (c.f. Fig. 1): Sodium chloride (NaCl) solutions (153.9 mmol/l) containing different agar gel concentrations (0%, 1%, 2%, 3%, 4%) were examined to compare ²³Na and ³⁵Cl-relaxation times. For pure NaCl solution, mono-exponential fitting was applied to fit 3D density-adapted projection reconstruction (DA-3DPR) [4] multi-echo data (TE = 0.3/ 1/ 2/ .../55 ms; TR(²³Na/³⁵Cl) = 300/200 ms; α = 90°; readout length T_{RO} = 5 ms; 8 echos each; 8000 projections; nominal spatial resolution: (5 mm)³). To calculate T₂* of the agar gel phantoms, a bi-exponential model with a short (T_{2s}*; 60%) and a long relaxation component (T₂₁*; 40%) was applied. Inversion recovery imaging using different inversion times (starting from TI = 1 ms to TI(²³Na/³⁵Cl) = 300/150 ms) and mono-exponential fitting were used to determine T₁ relaxation times (TE = 0.3 ms, TR(²³Na/³⁵Cl) = 500/300 ms; T_{RO} = 5 ms; 6000 projections; (6 mm)³).

Brain-imaging (c.f. Fig. 2): (1) To estimate relaxation times in the human brain, one subject was examined with 7 multi-echo sequences (TE = $0.55/0.75\ 1/\ 2/\ .../\ 13$ ms; TR = 35 ms; $\alpha = 60^\circ$; T_{RO} = 5 ms; (8.9 mm)³; 8 echoes each; 6000 projections; T_A = 3 min 30 s). Additionally, another subject was examined using 10 inversion recovery sequences (TE/TR = 0.8/150 ms, TI = 3/6/9/12/15/20/25/30/40/50 ms, T_{RO} = 5 ms, (10 mm)³; T_A = 7 min 30 s).

(2) 3D density-adapted projection reconstruction images of the human brain were acquired with minimized relaxation weighting (TE/ TR = 0.6/ 90 ms; $\alpha = 90^{\circ}$; $T_{RO} = 10$ ms; pulse length: 1.1 ms; 9000 projections; (6 mm)³; Hamming filtering; $T_A = 13.5$ min). To suppress liquids, an inversion recovery (IR) preparation was applied (TE/ TR = 0.8/ 150 ms; TI = 24 ms; $T_{RO} = 5$ ms; 4000 projections; (9 mm)³; Hamming filtering; $T_A = 10$ min).

<u>Muscle-imaging (c.f. Fig. 3):</u> (1) Images with 12 different echo times (TE = $0.35/0.55/0.75/1/1.25/1.5/1.75/2/2.5/3/3.5/4 ms; TR = 35 ms; 6000 projections; (11 mm)³; Hamming filtering; <math>T_A = 3 \text{ min } 30 \text{ s}$) were used to calculate T_2^* relaxation times of four healthy subjects (Tab. 1). (2) The average Cl⁻ concentration was estimated in soleus and gastrocnemius muscle using the fitted signal intensity (TE = 0 ms) and the signal of the reference tube 2 (TE = 0.35 ms image).

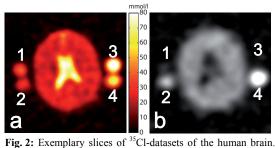
Results

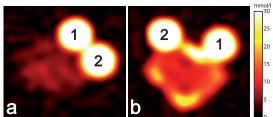

 ^{35}Cl images of the human brain with SNRs of 15 (brain parenchyma) and 45 (CSF) could be acquired with an isotropic voxel size of (6 mm) 3 in 13.5 min (Fig. 2a). ^{35}Cl exhibits much shorter relaxation times than ^{23}Na (Fig. 1), in brain parenchyma ^{35}Cl -relaxation times of $T_{2s}^*=1.1(1)$ ms, $T_{2l}^*=6.2(3)$ ms and $T_1=10.5$ ms were measured. The differences in T_1 relaxation times of ^{35}Cl could be used to selectively suppress signal from ^{35}Cl ions in cerebrospinal fluid (Fig. 2b). In skeletal muscle, the calculated CI concentrations and relaxation times showed a strong interindividual variation of more than a factor of 2 (Tab. 1) - in general - higher CI concentrations were found in older subjects (Fig. 3).

Discussion and Conclusion

In this work 35 Cl images were acquired for the first time in humans. 35 Cl-MRI of the brain and muscle is possible within clinically feasible measurement times (< 15 min) and spatial resolutions of (6 mm) 3 (brain) and (11 mm) 3 (muscle). Strong inter-individual variations of the measured Cl concentrations in skeletal muscle (c.f. Fig. 3) might be caused by differences in concentrations, residual T_{2}^{*} weighting, or partial invisibility of the 35 Cl-signal. In future, 35 Cl-MRI should complement 23 Na-MRI and enable a better analysis of (patho-) physiological cellular processes.

References


- 1. Jentsch, T. J. Physiol. Rev. (2002) 82: p. 503
- 2. Jurkat-Rott K, Lehmann-Horn F. In: Myology, McGraw-Hill, 3rd edition, 2004, pp. 203-231
- 3. Kirsch S, et al. NMR in Biomedicine (2010) 23: p. 592
- 4. Nagel AM, et al. Magn Reson Med (2009) 62: p. 1565


Fig. 1: T_1 and ${T_2}^*$ ²³Na and ³⁵Cl relaxation times of 153.9 mmol/l sodium chloride solution containing different concentrations of agar gel. ³⁵Cl exhibites much shorter relaxation times than ²³Na.

Tab. 1: ³⁵Cl T₂*-relaxation times and estimated chloride concentrations of human calf muscle. Error bars from the linear regression are given in parentheses.

Subject (age, sex)	Concentration [mmol/l]	T _{2s} * [ms]	T ₂₁ * [ms]
#1 (24y, f)	11 (2)	0.3(2)	2.5 (7)
#2 (27y, m)	8 (2)	0.5(3)	2.7 (6)
#3 (66y, m)	19 (2)	0.8(3)	3.0(2)
#4 (71y, m)	18(1)	0.64(7)	4.1 (3)

Reference tubes containing NaCl solution (1, 2: 51.3 mmol/l; 3,4: 102.6 mmol/l) and 4% agar gel (2, 4) were used. a) ³⁵Cl-concentration map. b) ³⁵Cl-signal from pure NaCl solution (1, 3) and CSF can be well suppressed.

Fig. 3: Exemplary slices of ³⁵Cl-datasets of the human calf muscle. Reference tubes with 51.3 mmol/l NaCl and 0% (tube 1) and 4% agar (tube 2) were used. a) Subject #1 (24y, f). SNR: 15. b) Subject #2 (71y, m). SNR: 7.

Acknowledgement:

Parts of this work were supported by the Eva Luise and Horst Köhler Foundation and the German Federal Ministry of Education and Research (project DOT-MOBI; 01IB08002).