

MR Monitoring of Non Contrast-enhanced brain infusions with MRI T1 Mapping

Samuel A. Hurley¹, Do P. Tromp², Marina E. Emborg^{1,3}, Sachiko Ohshima-Hosoyama³, Martin Brady⁴, Raghu Raghavan⁴, Ken Kubota⁵, and Andrew L. Alexander^{1,6}
¹Medical Physics, University of Wisconsin, Madison, WI, United States, ²Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, WI, United States, ³Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States, ⁴Therataxis, Baltimore, MD, United States, ⁵Kinetics Foundation, Los Altos, CA, United States, ⁶Psychiatry, University of Wisconsin, Madison, WI, United States

Introduction: Convection-enhanced delivery (CED) [1] is a method for the targeted delivery of high molecular weight agents into the brain parenchyma that would otherwise not cross the blood-brain barrier. This technique allows for the direct, targeted infusion of a drug over a larger area than previous methods with a roughly spherical distribution and uniform concentration within the target volume. In order to verify that the correct target volume has been treated, therapeutic agents are typically co-infused with a Gadolinium (Gd)-based T_1 shortening agent and monitored using T_1 -weighted MRI [2,3]. This is an important step to verify that the correct dose of a drug or agent has been administered to have a therapeutic effect. CED has been proposed as a method for the delivery of agents to treat Parkinson's disease. However, it is known that heavy metal exposure may be a factor for increased risk for Parkinson's [4], and it would be prudent to have a method for tracking infusion without introducing Gd into the brain parenchyma. Unlike T_1 weighted imaging, quantitative T_1 mapping removes the confounding effects of receiver coil sensitivity and proton density [5], and is proportional to infusion concentration [6]. We present the use of T_1 mapping to track infusion distribution and relative concentration of an infusion without the co-infusion of a Gd contrast agent.

Methods: Four rhesus macaque (*Macaca mulatta*) underwent *in vivo* CED delivery of a therapeutic contrast agent in phosphate buffered saline without the use of a Gd contrast agent. All experiments were performed according to the federal guidelines of animal use and care and with approval of the local IACUC. Infusions of 30 μ L were performed into the caudal putamen (8-10mm in depth) under MRI guidance using the Navigus catheter navigation system and a fused silica cannula. Three animals underwent infusion (three bilateral, one unilateral) for a total of 7 infusions.

Scans were acquired on a GE Discovery MR750x (GE Healthcare; Waukesha, WI) using a 3-inch diameter surface coil placed on the dorsal surface of the head. Spoiled gradient echo (SPGR) scans were acquired with TR/TE=21/6ms, NEX=1, and alternating flip angles $\alpha = [6 20]^\circ$ over the course of the infusion. Scans were acquired at 256x256x64 matrix and 0.55x0.55x0.8 mm³ voxel size. After the infusion, a region of interest (ROI) was drawn on the final (30 μ L) time point, covering the area of observed infusion. Quantitative T_1 mapping was then performed on a pre-infusion and 30 μ L images in the series using a linearized version of the DESPOT1 equation [5].

Results: Figure 1 illustrates an R_1 maps of a non-contrast putamen infusion (a) pre-infusion and (b) post-infusion, as well as an example infusion mask (c). Figure 2 shows pre and post-infusion R_1 ($=1/T_1$) values in each of the 7 infused caudate nuclei. Unlike the case of co-infusion with a T_1 -shortening agent such as Gd, infusion of saline increases the water content of tissue, and thus makes T_1 longer (R_1 shorter). Figure 3 shows the change in R_1 measured over the infusion mask, with a 95% confidence interval as computed by a paired student's t-test. Differences in R_1 vary from subject to subject, with a mean ΔR_1 of 0.064 s⁻¹.

Fig 1: R_1 ($=1/T_1$) maps of a non-contrast putamen infusion (a) pre-infusion and (b) post-infusion, as well as an example infusion mask (c).

monitoring, as well as increased signal averaging to improve the noise of parameter maps.

Acknowledgements: We acknowledge the financial support of the Kinetics Foundation.

References: [1] Bobo R. et al. Proc Natl Acad Sci 1994; 91:2076 [2] Nguyen T.T et al. J Neurosurg 2003;98:584 [3] Emborg M.E. et al. Cell Transplant 2010;19:1587 [4] Seidler A. et al. Neurology 1996;46:1275 [5] Deoni S.C.L. et al. MRM 2003;49:515 [6] Tweedle M.F. et al. MRM 1991;22:191

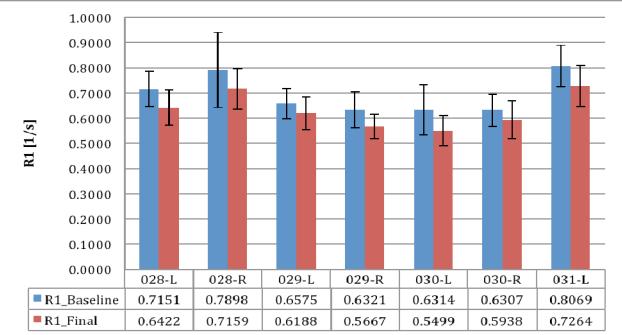


Fig 2: Putamen R_1 pre-infusion (blue) and post-infusion (red) over the infusion region of interest. Error bars indicate ± 1 standard deviation.

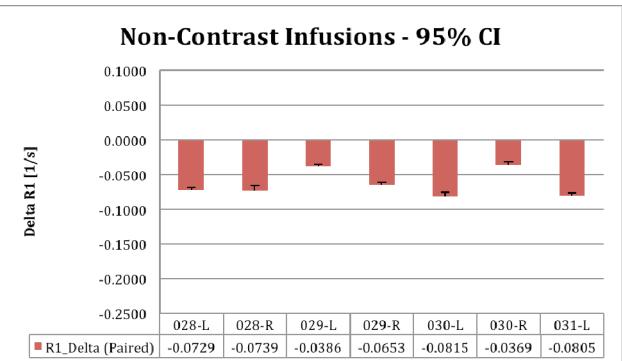


Fig 3: ΔR_1 values over the infusion region of interest. Error bars indicate a 95% confidence interval as computer from a paired student's t-test.

Discussion: A small but measurable reduction in R_1 was observed from the infusion of phosphate buffered saline without a co-infusion of Gd contrast agent. These changes are small in comparison to image noise; however statistically significant differences are still observed over the region of infusion for all cases. Future work will focus on the application of flip angle correction to CED