Towards real-time availability of 3-D temperature maps created with temporally constrained reconstruction
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INTRODUCTION:

In order to improve MR scan time, many investigators use the approach of sub-sampling the k-space data and generating images with a
constrained reconstruction (or compressed sensing) technique. While these techniques are greatly beneficial to dynamic imaging studies due
to the improved temporal resolution they offer, they are not yet suitable for real time applications as most require long reconstruction times
and perform the reconstruction in a batch fashion that uses all time frames at once. Here we present an approach to overcome these
limitations, which we call real-time temporally constrained reconstruction (RT-TCR), and apply the method to undersampled dynamic 3-D
MR temperature data of a high intensity focused ultrasound (HIFU) heating procedure.

METHODS:
Original TCR. The original TCR algorithm reconstructs images, m, from k-space data, d, by iteratively minimizing a cost function"*:
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where F' is the Fourier Transform, W is a binary function that represents which phase encoding lines have been acquired, m’ is the image
estimate, and o is a spatially varying free parameter. Using an entire 4-D data set of 192x108x30x77 voxels and 100 iterations, the algorithm
takes 236 seconds to converge on a 12-core computer (Dual Intel Xeon Processor X5650, 2.66 GHz, 64 GB RAM).

RT-TCR. Several modifications have been made to the original TCR method in order to achieve real-time availability of the reconstructed
images. First, the data is reduced along the fully sampled k, and k, directions such that the RT-TCR algorithm only operates on the part of the
image where the temperature is changing rapidly. A sliding window reconstruction is used for the other areas. Second, the code has been
rewritten for both parallel processing and a GPU implementation (NVIDIA Quadro 6000 with 448 cores). Third, when the data for the
current time frame 7 is acquired, the reconstruction is performed using only frames [# — P, ¢], with P = 12 for these results. This reconstruction
gives an initial estimate of the temperature at time #, and is also used to update the temperatures for times #-1, ¢-2, ... -P/2. In this way, an
initial estimate of the current temperature is obtained with no lag time (except for the RT-TCR computation time), and the temperatures for
previous time frames are updated successively until they converge, with each update having some lag time.

Testing. A 4-D data set acquired during HIFU heating of an agar phantom was used for testing (3-D segmented EPI sequence, 6X
undersampling, 1.5x1.5x3.0mm resolution; 192x108x30 matrix; TR/TE = 28/10 ms; EPI factor = 9; 1.7 sec/image). RT-TCR temperatures
(with no lag time and with a 1-time-frame lag) are compared against sliding window and original TCR temperatures.

RESULTS & CONCLUSIONS:

Using a 10x108x10x13 voxel subset of the data, the RT-TCR algorithm creates images in 1 second using the 12-core computer (CPU) and
0.7 seconds using GPU. Figure 1 shows temperature plots from one voxel in the center of the HIFU hotspot. Figure 2 shows temperature
maps from the original TCR images at four different times (black arrows in Figure 1) and the corresponding difference maps for sliding
window and RT-TCR reconstructions. The RT-TCR temperatures with no lag deviate somewhat from the original TCR temperatures,
especially where the 2™ derivative in time is high. Minimal errors remain after first RT-TCR update and almost no errors remain after the 2™
update (not shown). The results are a good step towards realizing real-time availability of TCR images that would provide high spatial and
temporal resolution temperature maps with full 3-D coverage over a large volume, and GPU computing holds a promise in this realization.
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