

Mapping of Oxygen By Imaging Lipids relaxation Enhancement (MOBILE) in experimental tumor models: comparison with R₂*, R₁ H₂O, and OxyLite fiber optic probes.

Benedicte F Jordan¹, Julie Magat¹, Elif Ozel¹, Florence Colliez¹, Anne-Catherine Fruytier¹, Valerie Marchand¹, Lionel Mignion¹, Caroline Bouzin², Olivier Feron², and Bernard Gallez¹

¹Biomedical Magnetic Resonance Group, Université Catholique de Louvain, Brussels, Belgium, ²Pole of Pharmacotherapy, Université Catholique de Louvain, Brussels, Belgium

Purpose and objectives: Tumor hypoxia is acknowledged as a major factor of resistance of solid tumors to treatment. Improving tumor oxygenation at the time of treatment could lead to an improved response to therapy (1). In order to individualize the treatments and select patients who could benefit from tumor reoxygenation, there is a critical need for methods able to monitor dynamically and noninvasively tumor oxygenation. Variations in T₁ and T₂* are potentially valuable MRI tools to changes in tumor oxygenation. T₂* is sensitive to the relative Hb/HbO₂ ratio in vessels (2), while T₁ change is sensitive to dissolved oxygen which acts as a T₁-shortening paramagnetic contrast agent (3). The purpose of the current work was to compare the MOBILE technique, a method developed to map variations in oxygenation based on the changes in the relaxation properties of the tissue lipids by exploiting the higher solubility property of oxygen in lipids than in water (4), with R₂*, R₁ H₂O, and simultaneous quantitative oxygen measurements using fluorescence quenching fiber optic probes. Changes in tumor oxygenation were induced by an hyperoxic breathing challenge in order to determine correlations between the response assessed using each technique vs the OxyLiteTM technique.

Material and Methods:

Tumor models & protocol: Mammary tumor models (NT-2 and Human MDA-MB-231 cells) were implanted orthoptically in FBV and FVB/N mice, respectively (n=5/model). Mice were anesthetized using isoflurane and the MR compatible OxyLite probe was inserted into the tumor. Three MR measurements of each type (R₁ H₂O, R₁ Lipids, R₂*) were acquired during air breathing and repeated during carbogen breathing.

MR experiments: Experiments were performed with a 11.7T (Bruker, Biospec), and with a quadrature volume coil (inner diameter of 40 mm). A segmented IR FISP (Inversion-Recovery Fast Imaging with Steady state Precession) sequence (SSFP FID mode) was used to acquire parametric images of T₁ relaxation time. The acquisition parameters were TR/TE/FA/BW/matrix = 4 ms/1.2ms/5°/100kHz/64x64, 4 segments, and a total acquisition time of 1min20s. For the lipids experiment, we first evaluated the difference in Hertz between water and lipid peaks on a single pulse spectrum. These offsets were then used as an imaging frequency offset in the same IR FISP protocol and the water signal was spoiled. Images were treated using Matlab to determine the T₁ relaxation. For T₂* measurements, a Multi Gradient Echop (MGE) sequence is performed with 8 echoes (between 3.5 ms & 31.5ms) with a total acq. time of 4min 48s. A 256x256 matrix is obtained with TR/flip angle/slice thickness=1500ms/30°/1mm.

Results:

Tumor oxygenation was increased in the majority of the tumors (7/8) under carbogen breathing conditions, as shown using the OxyLite probe. Mean relative changes in relaxation rates with respect to the hyperoxic challenge were compared between R₁ H₂O, R₁ Lipids, and R₂*, with relative changes of 2.1 +/- 1.0% ($\Delta R_1 H_2O$), 10.1 +/- 4.8 % ($\Delta R_1 Lipids$), and 9.8 +/- 4.6 % (ΔR_2^*) (Fig.1). In addition, the tip of the OxyLiteTM probe could be localized on the MR images, allowing the comparison of the quantitative values obtained by fluorescence quenching and the MR relaxation values obtained in the sensitive region of the probe (3*3 pixels with the exclusion of the central pixel). The best correlation was found between ΔR_1 Lipids and ΔpO_2 , presenting a positive linear fit with a slope of 0.0027 ± 0.0023 ($r^2=0.22$) (Fig.2). Indeed, $\Delta R_1 H_2O$ presented a negative slope vs ΔpO_2 (-0.0012 ± 0.0006 ; $r^2=0.37$) (Fig.3), and ΔR_2^* presented a positive slope (0.4527 ± 0.4120 ; $r^2=0.17$) (Fig.4), while expected to be negative. Typical maps of the relative difference in relaxation rates before and during the carbogen challenge were generated in order to compare the sensitivity of the R₁ of lipids (MOBILE), R₁ of H₂O, and R₂* methods (Fig.2,3,4, bottoms).

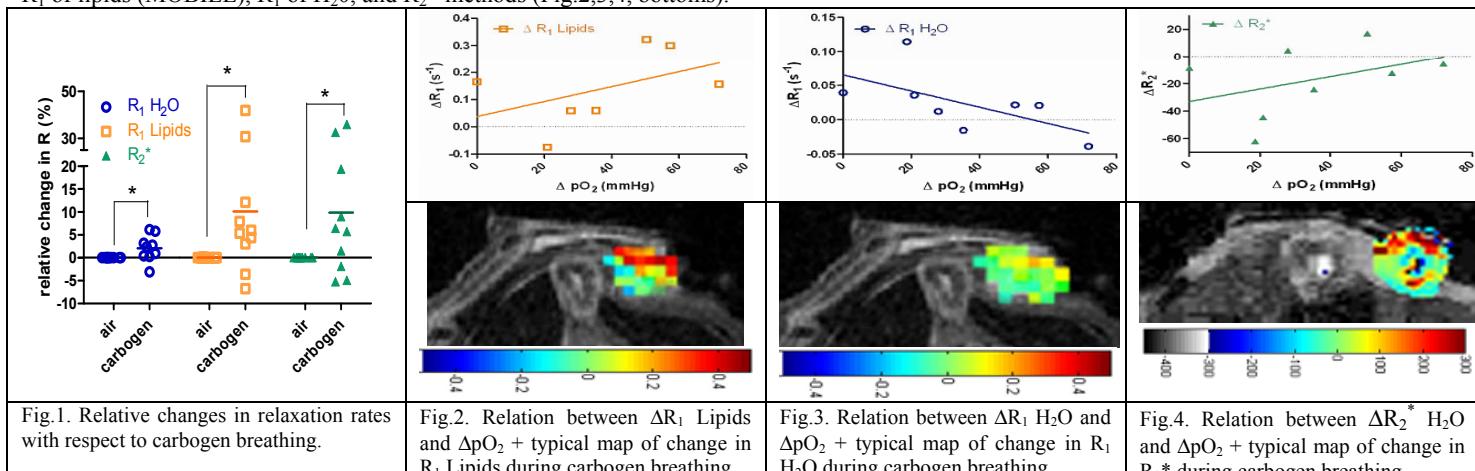


Fig.1. Relative changes in relaxation rates with respect to carbogen breathing.

Fig.2. Relation between ΔR_1 Lipids and ΔpO_2 + typical map of change in R₁ Lipids during carbogen breathing

Fig.3. Relation between ΔR_1 H₂O and ΔpO_2 + typical map of change in R₁ H₂O during carbogen breathing

Fig.4. Relation between ΔR_2^* H₂O and ΔpO_2 + typical map of change in R₂* during carbogen breathing

Conclusions:

MOBILE offers an increased sensitivity when monitoring changes in tumor oxygenation compared to R₁ of water or R₂*. However, it is important to keep in mind that oxygen is not measured in the same compartments with R₁ or R₂* (i.e. R₁ is assessing tissue pO₂ whereas R₂* is assessing pO₂ in the vascular compartment). The information afforded by both techniques might be complementary. MOBILE could therefore be a useful complementary tool to R₂* to dynamically assess changes in tumor oxygenation quantitatively.

References:

- (1) Kaanders et al, Lancet Oncol 2002, 3, 728-737 (2) Baudelet et al, Magn Reson Med 2002, 48, 980-986 (3) O'Connor et al, Int J Radiat Oncol Biol Phys 2009, 75, 1209-1215 (4) Magat J. et al, Proc. Intl. Soc. Mag. Reson. Med. 19 (2011) 553.