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INTRODUCTION Dynamic contrast enhanced MRI (DCE-MRI) can offer information related to tumor perfusion and 
permeability (Ktrans), vascular volume (vp), extravascular extracellular volume fraction (ve), and the intracellular water 
lifetime of a water molecule (τi). There have been many efforts employing DCE-MRI as a surrogate biomarker for 
assessing and predicting the response of breast tumors to neoadjuvant chemotherapy. However, most studies perform 
univariate analysis on these parameters. In this study, we perform multivariate analysis, using machine learning methods, 
to predict the response of breast cancer to neoadjuvant chemotherapy after a single cycle of therapy. 

METHODS 22 patients with Stage II/III breast cancer were enrolled in an IRB-approved clinical trial where serial breast 
MRI scans were acquired pre-therapy (t1) and after one cycle of neoadjuvant chemotherapy (t2). Imaging was performed 
on a 3.0 T Achieva MR scanner (Philips Healthcare, Best, The Netherlands). The DCE-MRI acquisition employed a 3D 
spoiled gradient echo sequence with TR\TE\α =7.9ms\1.3ms\20o. The acquisition matrix was 192×192×20 over a sagittal 
(22 cm)2 FOV with a slice thickness of 5 mm. Each 20-slice set was collected in 16.5 seconds at 25 time points and 0.1 
mmol/kg of Magnevist was injected at 2 ml s-1 after the third dynamic scan. Responders (n=11) were defined as those 
patients who had a pathologic complete response at time of surgery, while non responders (n=11) were defined as patients 
with residual invasive cancer at the primary tumor site.    

Three pharmacokinetic models were used to estimate physiological parameters: the Tofts-Kety model (TK) [1], the 
extended Tofts-Kety model (ETK) [1], and the fast exchange regime model (FXR) [2]. 12 parameters were computed for 
each model to assess treatment response: mean and standard deviation (STD) of Ktrans, ve, and vp at t2, and the change in 
the region of interest mean and STD of Ktrans, ve, and vp from t1 to t2, respectively. For a given model, each variable was 
first considered by itself, and then in combination with the estimate obtained by all three models as inputs into  Logistic 
Regression (LR) and Support Vector machine (SVM). The leave-one-out method, which used one patient as the test set 
and all other patients as the training set, was employed to compute the accuracy, precision, sensitivity, and specificity. 

RESULTS Table 1 lists the best accuracy, prediction, sensitivity, and specificity obtained by LR and SVM with linear, 
quadratic, and Gaussian Radial Basis Function (RBF) kernels, respectively. The parameters leading to the best results are 
also shown in the table. Note that different parameters could lead to same results. For example, the change in mean Ktrans 
estimated by TK or ETK, or the combination of this parameter as estimated by all three models yielded the best results 
using LR. Both Ktrans and vp led to better results than ve and τi. In particular, the change from t1 to t2, in the mean of Ktrans 
estimated by TK and the change in the mean of vp estimated by ETK, are the most sensitive predictors. It is also 
interesting to note that, in this preliminary study, the combination of parameters did not significantly improve the results. 

 

 

 

 

 

 

CONCLUSION The preliminary results demonstrate the feasibility of using DCE-MRI data and machine learning for 
predicting the response of breast tumors to a single cycle of neoadjuvant chemotherapy. Also, it appears that the SVM 
with different kernels perform differently in this application. As research on selection of the appropriate kernel functions 
is very active, future efforts will include optimizing kernel functions and parameters in machine learning.  
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 Parameters used in analysis Accuracy Precision Sensitivity Specificity 

LR ∆Ktrans (TK) / ∆Ktrans (ETK)/ ∆Ktrans(all 3 models) 73% 78% 64% 82% 
SVM, linear ∆Ktrans (TK)/ ∆Ktrans(all 3 models)/ ∆vp(ETK) /STD vp(ETK) 77% 100% 55% 100% 
SVM, quadratic ∆vp(ETK) 77% 80% 73% 82% 
SVM, RBF ∆Ktrans (TK) 77% 100% 55% 100% 

Table 1: The accuracy, precision, sensitivity, and specificity using different classification methods and corresponding 
parameters. 
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