Voxel-based Analysis of early DCE-MRI Changes May Predict the Response to Neoadjuvant Chemotherapy in Breast Cancer Patients

Xia Li¹, Lori R. Arlinghaus¹, A. Bapsi chakravarthy¹, E. Brian Welch¹, Jaime Farley¹, Ingrid A. Mayer¹, Vandana G. Abramson¹, Mark C. Kelley¹, Ingrid M. Meszoely¹, Julie A. Means-Powell¹, Ana M. Grau¹, Sandeep Bhave¹, and Thomas E. Yankeelov¹

1 Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, United States

INTRODUCTION To monitor tumor response to neoadjuvant chemotherapy, investigators have begun to employ the quantitative physiological parameters available from dynamic contrast enhanced MRI (DCE-MRI). However, most studies track the changes in parameters obtained from the tumor ROI or histograms, thereby discarding all spatial information on tumor heterogeneity. We have presented and validated a method for the registration of breast MR images obtained at different time points throughout the course of neoadjuvant chemotherapy [1-2]. In this study, we applied this method to longitudinal DCE-MRI data and performed a voxel-by-voxel analysis to examine the ability of early changes in parameters at the voxel level to separate pathologic complete responders (pCR) from non-responders (NR).

METHODS 22 patients with Stage II/III breast cancer were enrolled in an IRB-approved clinical trial where serial breast MRI scans were acquired pre-therapy (t_1) and after one cycle of neoadjuvant chemotherapy (t_2). Imaging was performed on a 3.0 T Achieva MR scanner (Philips Healthcare, Best, The Netherlands). The DCE-MRI acquisition employed a 3D spoiled gradient echo sequence with TR\TE\\\alpha = 7.9\text{ms}\\\1.3\text{ms}\\\20^\circ\$. The acquisition matrix was $192\times192\times20$ over a sagittal (22 cm) FOV with a slice thickness of 5 mm. Each 20-slice set was collected in 16.5 seconds at 25 time points and 0.1 mmol/kg of Magnevist was injected at 2 ml s⁻¹ after the third dynamic scan. Responders (n=11) were defined as those patients who had a pathologic complete response at time of surgery. Non responders (n=11) were defined as patients with residual invasive cancer at the primary tumor site.

The fast exchange regime model (FXR) was applied to the original DCE-MRI data to estimate tumor perfusion and permeability (K^{trans}), extravascular extracellular volume fraction (v_e), and the average intracellular water lifetime of a water molecule (τ_i). ROI analysis was performed on the segmented tumor regions in the original DCE-MRI data to obtain three variables: the change of mean, median, and mean of the top 15% parameters. The serial parametric maps were then registered *via* a constrained non-rigid registration [1-2]. For each parameter, the voxel-based analysis was performed on the registered parametric maps by computing the change of mean, median, and mean of the top 15% parameters on voxels showing an increase in the parameter from t_i to t_2 . A Wilcoxon rank sum test was then used to determine if there was a significant difference between the pCR and NR groups.

RESULTS Figure 1 shows the registered DCE-MRI data at three time points with the K^{trans} corresponding maps superimposed; the top row is a NR, while the bottom row is a pCR. The table lists the p values of three variables of Ktrans obtained by both the ROI and voxel analyses. It shows that the voxel-based analysis yielded significant results (p < 0.05) in all three ways of summarizing K^{trans} . Most results for v_e and τ_i , by both the ROI and voxel analyses, were not significant.

CONCLUSION The results indicate that the voxel-based analysis after longitudinal

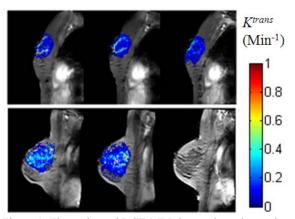


Figure 1: The registered DCE-MRI data at three time points (columns) with the corresponding K^{trans} superimposed; the top row is for a NR, while the bottom row is for a pCR.

	K ^{trans}	
Analysis	ROI	Voxel
Δmean	0.12	0.02
Δmedian	0.02	0.03
∆mean of top15%	0.15	0.02

The Table lists the p values for three ways of summarizing K^{trans} by the ROI and voxel-based analyses. The changes of mean, median, and mean of the top 15% K^{trans} all lead to significant results, indicating the voxel-based analysis after longitudinal registration may improve the ability of DCE-MRI to separate pCR from NR patients.

registration may improve the ability of DCE-MRI to separate pCR from NR after one cycle of therapy when using the FXR model.

ACKNOWLEDGEMENTS NCI 1R01CA129961, NCI 1U01CA142565, NCI 1P50 098131, NCI P30 CA68485, and NCRR/NIH UL1 RR024975-01.

REFERENCES 1. Xia Li, et al., Magn. Reson. Imaging 27, 1258–1270 (2009). 2. Xia Li, et al., Med. Phys. 37(6), 2541–2552 (2010).