

Novel strategy to differentiate water and lipid composition

Qiong Ye¹, Yuan Mei², and Markus Rudin^{1,3}

¹Institute for Biomedical Engineering, Zürich, Zürich, Switzerland, ²Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States, ³Institute of Pharmacology and Toxicology, Zürich, Switzerland

Introduction: The prevalence of obesity and diabetes is an increasing world-wide problem. Not only the lipid content but also the distribution of lipid composition is of special importance in the pathogenesis of these diseases (1). A detailed analysis of lipid content and distribution of lipid composition appears indispensable for a better understanding of lipid metabolism and its regulation. Proton magnetic resonance spectroscopy has evolved to be a reliable method for measuring both fat content and composition non-invasively. Adipose tissues and liver are critical for lipid regulation. Typically, this method measures one region of interest and the refocusing pulses required in the PRESS sequence involve high RF power deposition. The objective of this study was to demonstrate the feasibility of a magnetic resonance imaging based method to assess the lipid distribution in neck fat pad.

Materials and methods: *Phantom:* 2 standard NMR tubes were used, filled with 100% alcohol and intralipid (<20%) separately. *Animals:* One ob/+ mouse 38 weeks of age was used. The mouse was anesthetized using isoflurane (1.5%-2.25%) in an oxygen-air mixture (150/400) throughout the experiments with intubation. The body temperature and respiration were monitored. The respiration signal was used for respiration gating during MR acquisition. All animal experiments were performed in strict adherence to the Swiss Law for Animal Protection. *MRI experiment:* All MRI measurements were performed on a Bruker BioSpec 94/30 (Bruker BioSpin MRI, Ettlingen, Germany) system using a volume resonator for excitation and a surface coil for signal detection. Gradient Echo sequence was applied with the following parameters: VOI 1.6*2.2 cm² (phantom), 2.5*2.5 cm² (neck), slice thickness = 1.0 mm; number of slice = 1, matrix size = 128*128, flip angle = 52°, TR = 600.0 ms, TE = 3.0 to 28.4 ms with ΔTE = 0.2 ms (phantom), and TE=3.0 to 4.5 ms ΔTE = 0.1 ms (neck), band width=8000.00Hz, number of sampling points = 256, acquisition time = 2.56 ms, number of averages NA = 1 (phantom) and NA = 2 (Neck) for sufficient SNR. Single-voxel localized ¹H MR spectra were acquired using the PRESS sequence with additional outer volume suppression with the following parameters: VOI 1.5*1.5*1.5 mm³, TR = 6s, TE = 12ms, band width = 4006.41 Hz, number of sampling points = 6009, acquisition time = 1499.85 ms, number of averages (NA) = 20. *Analysis of MRS data:* All MRI data were processed using Matlab (2007)(MathWorks, Inc.Natick, MA, US.). All spectroscopy data were processed using jMRUI 4.0. The intensity *S* of an on-resonance signal at echo time TE_k is given as (2)

$$S(TE_k) = \frac{M(1-e^{-TR/T_1})e^{-TE_k/T_2^*}\sin\alpha}{(1-e^{-TR/T_1}\cos\alpha)} = M\eta e^{-TE_k/T_2^*} \text{ where } \eta = \frac{(1-e^{-TR/T_1})\sin\alpha}{(1-e^{-TR/T_1}\cos\alpha)}.$$

Correspondingly the signal arising from the contribution of *N* spectral components characterized by frequency offset Δ*f*_j becomes

$$S(TE_k) = \sum_{j=1}^N M_j \eta_j e^{-TE_k/T_2^*} e^{2\pi i \Delta f_j T_k}$$

And it depends on proton density *M_j*, repetition delay TR, echo delay TE_k, relaxation times T_{1j} and T_{2^{*}}, flip angle *α* and the offset frequency Δ*f_j* relative to water. Fourier Transform of S(TE_k) data were used to differentiate individual resonances Δ*f_j*.

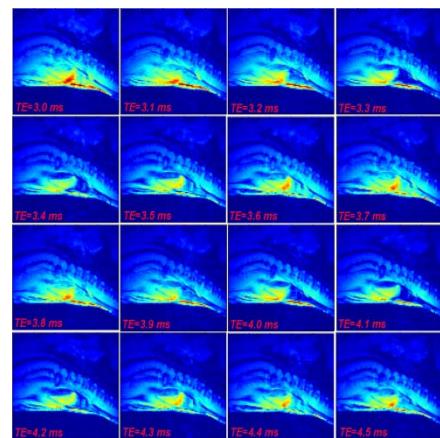


Fig 2. MR images from neck of ob/+ mouse for a TE series (TE=3 to 4.5ms).

resolved, i.e. the spectral resolution requirement measurement time can be invested to increase spatial resolution. Moreover, the method uses relatively low flip angle, hence reducing power deposition. Accurate spectral quantification requires T1 and T2* maps for individual resonances. Also the spectral resolution has to be high enough to accurately reproduce lineshapes. An attractive application of this method is the analysis/monitoring of the distribution of lipid content and composition within various tissue compartments yielding insights into normal and disordered lipid metabolites.

References:

1. Machann J, et al. 2005. Age and gender related effects on adipose tissue compartments of subjects with increased risk for type 2 diabetes: a whole body MRI/MRS study. *MAGMA*. **18**: 128-37.
2. Liu CY, et al. 2007. Fat quantification with IDEAL gradient echo imaging: correction of bias from T(1) and noise. *Magn Reson Med*. **58**: 354

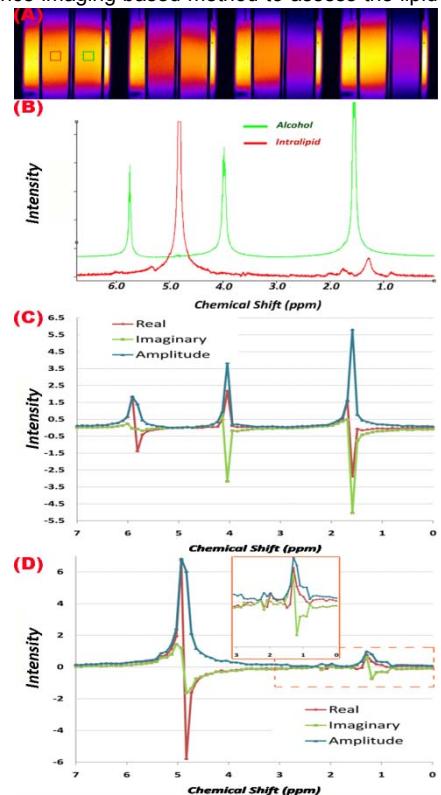


Fig 1. (A) MR images from phantom, (B) single voxel spectrum from one voxel in alcohol and intralipid respectively as indicated in (A), typical MRI derived results from alcohol (C) and intralipid (D).

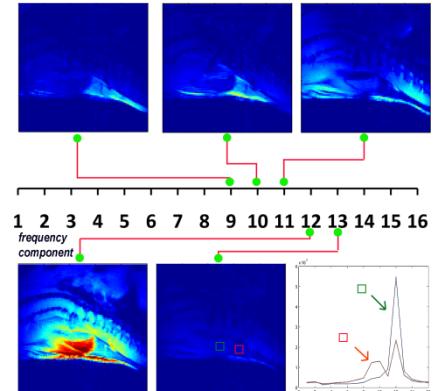


Fig 3. Chemical shift specific MR images obtained following FT of image series shown in Fig.2. Spectra of two voxels are plotted.