

Optimal TE₁ and Echo Time Shift Combination for R_{2*} Estimation using T_{2*} IDEAL

Haining Liu¹, Xinwei Shi², Chun Yuan³, and Hua Guo²

¹Center for Bio-Medical Imaging Research, Tsinghua University, Beijing, Beijing, China, People's Republic of, ²Tsinghua University, ³Department of Radiology, University of Washington, Seattle, WA

Introduction

Chemical shift based multi-point water-fat separation techniques can not only accurately quantitate fat percentage but also be used to calculate T_{2*} map, which is an important indication of iron accumulation in the tissue [1]. The noise performance of complex-fitting method is greatly affected by the selection of echo time combination [1, 2]. Cramer-Rao Bound theory has been used to find optimal echo time combination for high number of signals (NSA) for fat and water separation [3]. However, the influence of R_{2*} to fat quantification has not been investigated comprehensively. Besides, the ideal echo time combination for T_{2*} and fat/water separation are usually different. Thus the optimal protocol for fat quantification may not suitable for the R_{2*} estimation. The purpose of this work is to evaluate the noise performance of R_{2*} estimation based on the complex-fitting approach. Preliminary results show that it is sensitive to echo times and it's necessary to use optimal protocols when the R_{2*} values are more interested, such as iron load studies. Besides, the effectiveness of Cramer-Rao Bound theory on searching the optimal echo combination for R_{2*} estimation is studied.

Methods

Three methods were used in this work: 1) NSA analysis based on Cramer-Rao bound. Fisher matrixes were built up using the method introduced by Pineda et al [2] with additional R_{2*} considered. 2) Monte Carlo simulation. Computer simulations were carried out to investigate the noise performance of R_{2*} estimation using T_{2*}-IDEAL algorithm with pre-calibrated multi-peak fat model using six equally spaced echoes [6]. Both TE₁ (1st echo time) and ΔTE (echo time shift) increased with a step of 0.02 ms from 0ms to 2ms (water and fat are approximately in phase). The water/fat source signal was generated based on the six-peak fat spectrum model [4]. The T_{2*}-IDEAL algorithm with pre-calibrated multi-peak fat model was used to process the data. The fat ratio ranges from 0 to 80% with 1% increment. Two sets of different R_{2*} values for water and fat were assumed, R_{2water}^{*}=52s⁻¹, R_{2fat}^{*}=64s⁻¹ to simulate the ordinary conditions; and R_{2water}^{*}=120s⁻¹, R_{2fat}^{*}=200s⁻¹ to simulate the iron overload conditions. Complex Gaussian distributed noise was added to the source signal with SNR of 100dB. Since the NSA of R_{2*} from simulation is not as meaningful as fat/water magnitude, only the variance of R_{2*} was calculated here. 3) Phantom study. Seven emulsified water-fat phantom were built using a procedure described in [5] with with fat-fractions of 0%, 10%, 20%, 30%, 40%, 60%, 100%. TE₁=1.89ms and seven different ΔTEs (0.38ms, 0.7ms, 0.9ms, 1.1ms, 1.36ms, 1.6ms, 1.9ms) were repeated 60 times on a 3T scanner (Achieva, Philips Medical System) using a birdcage RF coil. Other imaging parameters: FOV 240mm×198mm, image matrix=160×160. The computation algorithm and parameters were the same as the Monte Carlo simulation.

Results

Fig.1 only showed Monte Carlo simulations for the condition when R_{2water}^{*}=52s⁻¹, R_{2fat}^{*}=64s⁻¹. Different conditions, [R_{2water}^{*}=52s⁻¹, R_{2fat}^{*}=64s⁻¹] or [R_{2water}^{*}=120s⁻¹, R_{2fat}^{*}=200s⁻¹], had no significant difference in R_{2*} variance pattern. Every point in this figure represents the highest R_{2*} variance estimation among the fat ratio from 0% to 80%. Only the result of 0.4ms<ΔTE<1.6ms was shown here since when 0ms<ΔTE<0.4ms and 1.6ms<ΔTE<2ms, the variance of R_{2*} is too big. It is shown that when TE₁ ∈ (1.4ms, 2ms) and

ΔTE ∈ (1.3ms, 1.5ms) (circled area), the R_{2*} estimation has the lowest variance and thus is the optimal choice for stable R_{2*} calculation. The results from the phantom experiments in Fig. 2 show that when ΔTE=1.36ms and 1.6ms the R_{2*} variance is more stable than other ΔTE choices. When, ΔTE ≤ 0.6ms and > 1.6ms, R_{2*} variance is much bigger. This is consistent with the Monte Carlo simulation results. However, the NSA results based on Cramer-Rao theory in Fig.3 are not consistent with the Monte Carlo simulations as well as phantom experiments.

Discussion and Conclusion

Based on the Monte Carlo simulations and phantom experiment studies, the ideal TE₁ and ΔTE combination can be found for the complex-fitting method when T_{2*} quantification is interested. The results are different from those when water and fat quantification are of interest [2]. The difference between simulation and Cramer-Rao theory may be caused by the nonlinear relationship between the source signal and R_{2*}. According to the definition of NSA in [2]: $NSA(\rho) = \delta_s^2 / \delta_\rho^2$ Where ρ is the parameter to be estimated and δ_ρ^2 is the variance of the measured images. Unlike the water or fat quantification, the noise of measured images non-linearly affects the estimation of R_{2*}. Our other simulations also show that when keeping the SNR constant while improving the magnitude of source image, the variance of R_{2*} is a constant. So NSA based on Cramer-Rao theory might not directly direct the choice of echo time combination for estimating R_{2*}.

Acknowledgements: Funding support by Key Member Program of Tsinghua University and National 985 Project.

References: [1]. Reeder et al, MRM 2004;51:35-45. [2]. Pineda et al, MRM 2005; 53:625-635. [3]. Chebrolu et al JMRI 2010; 32:493-500. [4]. Hamilton et al, NMR Biomed 2011; 24:784-790. [5]. Bernard et al JMRI 2008 27:192-197. [6] Yu et al, JMRI 2007; 26:1153-1161.

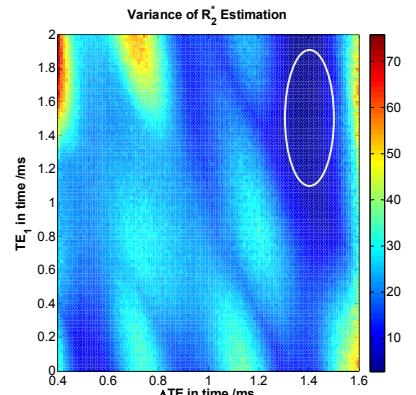


Fig.1 The simulation result of R_{2*} variance when R_{2water}^{*}=52s⁻¹, R_{2fat}^{*}=64s⁻¹, the circled area indicate the ideal protocol of echo shift combination when R_{2*} is interested.

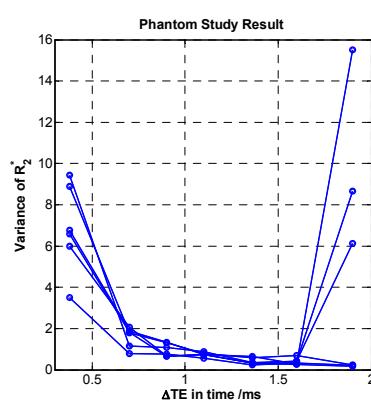


Fig.2 Variance of R_{2*} from phantom experiment.

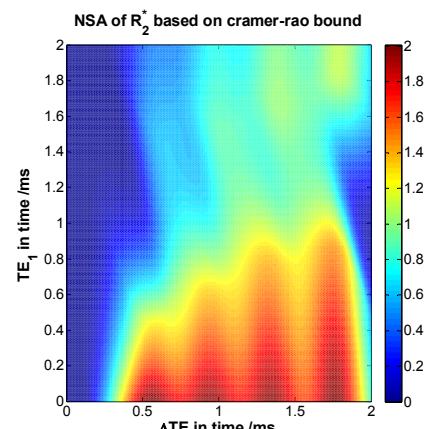


Fig.3 NSA of R_{2*} estimation based on Cramer-Rao theory.