

3D BOLD-MRI at high PAT-factors: How to save time!

Florian Lietzmann¹, Frank G. Zoellner¹, Tanja Gaa¹, Ulrike I. Attenberger², and Lothar R. Schad¹

¹Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany, ²University Medical Centre Mannheim, Institute of Clinical Radiology and Nuclear Medicine, Mannheim, Germany

Introduction

Regarding the worldwide increasing number of renal diseases, an early diagnosis of a renal impairment is very important not only for the purpose of an early treatment before severe organ damage occurs, but also to avoid kidney failure with the need of transplantation. To assess kidney function, the tissue oxygenation is a crucial parameter and shows a characteristic behaviour in pathologic cases [1]. In recent years, non-invasive blood oxygen level dependent (BOLD) MRI [2] has gained more importance in the entire field of MRI, not only for 2D and 3D head imaging, but also for its renal applications [3]. In contrast to cerebral imaging, renal imaging has to account for the respiratory cycle of the patient and hence, has to acquire images very quickly to allow for a breathhold examination avoiding severe motion artifacts. Furthermore, the acquisition scheme has to accomplish a sufficient resolution to be able to distinguish between different tissue compartments such as the renal medulla and the renal cortex. The aim of our work was to investigate the impact of the image resolution on the BOLD-evaluation. Therefore, we performed a clinical pilot study with four healthy volunteers and investigated whether the signal changes in the kidney induced by a pronounced water intake [4] could satisfactorily be followed utilizing three different optimized BOLD sequences (Fig. 1) with high parallel imaging acceleration factors for faster data acquisition.

Materials and Methods

We included four healthy volunteers (two male and two female) in our study with an average age of 43 years and an age range of 29 to 59 years. Every subject had to undergo a 10h diet without any food or drink intake prior to the examinations to maximize the BOLD-effect. The pre-waterload measurement was performed before a standardized break of 15 minutes in which each subject drank 1.0 litre of water. After this break, six post measurements followed the waterload, each with breaks of 5 minutes between the particular measurements. The whole study was performed on a Siemens 3 T Magnetom Skyra system (Siemens Healthcare, Erlangen, Germany) that allows, due to a novel multi-channel technique and an 18-channel body element coil, for a usage of high parallel imaging factors and hence a shorter acquisition time.

Fig. 1. Samples reconstructed from the first echo of the three different sequences (F, U, T) used in our study.