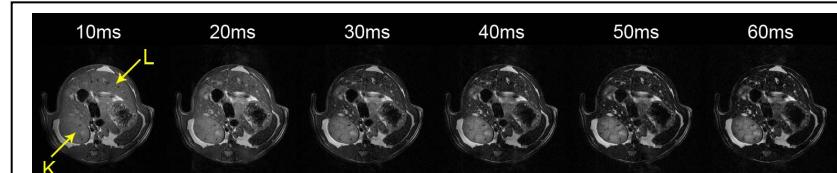


T₂ Relaxation Assessments of Kidney and Liver Disease in the PCK Rat Model of Autosomal Recessive Polycystic Kidney Disease (ARPKD)

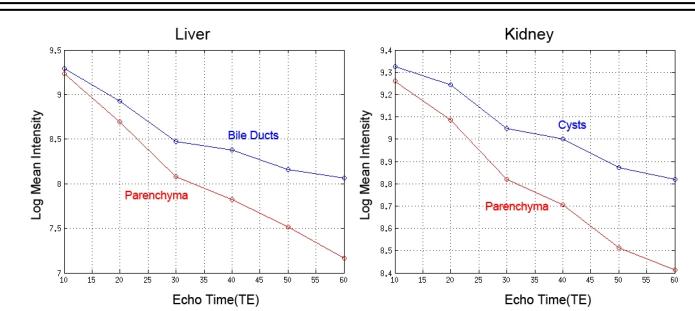
Huaiqiang Sun^{1,2}, Lan Lu², David L Wilson¹, Katherine M Dell^{3,4}, and Chris A Flask^{1,2}

¹Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States, ²Radiology, Case Western Reserve University, Cleveland, OH, United States, ³Pediatrics, Case Western Reserve University, and Rainbow Babies and Children's Hospital, Cleveland, OH, United States, ⁴CWRU Center for the Study of Kidney Disease and Biology, Case Western Reserve University, Cleveland, OH, United States

Introduction: Autosomal Recessive Polycystic Kidney Disease (ARPKD) is a multiorgan pediatric disease that manifests as progressively increasing renal cysts as well as liver biliary dilatation and congenital hepatic fibrosis. ARPKD kidney disease results in kidney failure in 40-50% of ARPKD children¹. With improved care of the kidney disease, an increasing number of ARPKD children are now experiencing liver dysfunction which may eventually require transplant. Unfortunately, no tools are currently available to effectively monitor ARPKD kidney and liver disease progression which directly limits therapeutic trials². We are currently developing quantitative MRI assessments of ARPKD kidney and liver disease using the PCK rat model that exhibits both kidney and liver diseases similar to human ARPKD^{3,4,5}. In this study, we are exploring the potential of T₂ relaxation assessments to assess renal cystic burden and hepatobiliary dilatation while also limiting the potentially variable effects of tissue perfusion.


Materials and Methods: Three 4-month-old male PCK rats were anesthetized with isoflurane and positioned at isocenter in a 7T Bruker Biospec MRI scanner. Axial kidney and liver images of three 4-month old male PCK rats were obtained with a respiratory-gated, multiecho RARE acquisition (TR=820ms, TE = 10ms-60ms, 6 echoes, resolution = 312 x 312 x 1500 μ m). T₂ relaxation maps of each animal's kidney and liver were generated via linear least squares fitting of conventional monoexponential decay models using either 1) all 6 echo images (TE=10-60ms); or 2) last 4 echo images (TE = 30-60ms). An ROI analysis was used to identify potential biexponential decay effects suggestive of tissue perfusion. A histogram analysis was then performed to establish consistent thresholds and to generate separate compartments for the kidney (cysts vs. normal kidney parenchyma) and liver (bile ducts vs. normal liver parenchyma) based on these T₂ estimates. Diseased and normal tissues were then segmented and mean T₂ values of each tissue compartment were calculated for each animal.

Results:


Representative T₂-weighted RARE images of PCK rat kidney and liver are shown in **Fig. 1**. As expected, biexponential characteristics suggestive of tissue perfusion were observed for the PCK rat liver and kidney data (**Fig. 2**). Based on these results, a histogram analysis (data not shown) was performed on the T₂ maps from the TE = 30-60ms data to establish consistent segmentation thresholds of 100ms (liver) and 130ms (kidney) for all imaging slices. Mean T₂ values for each tissue compartment are shown in **Fig. 3**. Mean T₂ values for all animals / slices are: liver parenchyma / bile ducts = 51ms / 175 ms; kidney parenchyma / cysts = 83ms / 184ms.

Discussion and Conclusions: We have developed an initial MRI methodology to characterize ARPKD kidney and liver disease progression in PCK rats *in vivo* using T₂ relaxation assessments. These preliminary results suggest that elimination of early echoes (TE=10-30ms) can reduce the biexponential characteristics of the T₂ decay curves thereby limiting the

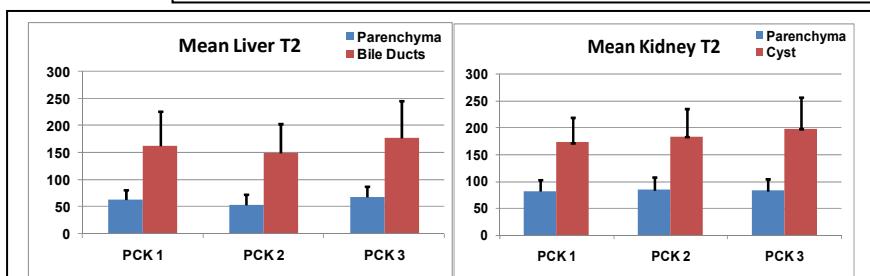

impact of tissue perfusion. As a result, these T₂ relaxation assessments may provide a consistent assessment allowing semiautomatic segmentation of diseased regions of both kidney and liver in ARPKD. Further studies are needed to confirm that the biexponential characteristics are indeed due to tissue perfusion. In addition, histological verification of the cystic burden and biliary dilatation obtained from this T₂ methodology are pending.

Fig. 1: Axial multiecho RARE images (6 echoes) from PCK rat liver and kidneys.

Fig. 2: T₂ decay curves for PCK rat liver and kidney. Note the rapid decay observed for the 10-30ms data suggestive of tissue perfusion effects.

Fig. 3: Mean perfusion-compensated T₂ relaxation values for 3 PCK rat livers and kidneys. Note the consistent T₂ values for normal and diseased tissues.

References:

[1] Dell K Adv in Chronic Kid Dis 2011 [2] Turkbey B Ped Radiology 2009 [3] Goto M Ped. Nephrology 2010 [4] Ward CJ Nat Genetics 2002 [5] Lu L. MRM in press.

The authors would like to acknowledge support from NIH/NIDDK RO1 DK085099.