


T_{1p} in infarcted mouse myocardium in vivo

Haja-Sherief N Musthafa¹, Galina Dragneva¹, Line Lottonen¹, Mari Merentie¹, Lyubomir Petrov^{1,2}, Tommi Heikura^{1,2}, Elias Ylä-Herttuala¹, Seppo Ylä-Herttuala¹, Olli Gröhn¹, and Timo Liimatainen¹

¹AI Virtanen Institute For Molecular Sciences, University of Eastern Finland, Kuopio, Finland, ²Ark Therapeutics Ltd., Kuopio, Finland

Introduction After myocardial infarction, structural and physicochemical changes occur in ischemic cardiac tissue. In chronological phase, fibrotic tissue replaces necrotic tissue among other changes resulting compensatory dilation of left ventricle [1]. Severe myocardial infarction and the following loss of contractile myocardium lead to heart failure [2]. MRI methods based on longitudinal rotating frame relaxation time (T_{1p}) have been previously implemented successfully in detection of acute cerebral ischemia [3], anticancer therapy response [4] and chronic myocardial infarction in swine model [5]. In the current study, we measured T_{1p} before and after myocardial infarction in mouse model.

Materials and methods Seven female C57BL/6J mice, which had infarction after left anterior descending artery (LAD) occlusion, were anesthetized using 1.5 % isoflurane. MRI experiments were performed at 9.4T using Varian DirectDrive console (Varian Inc., Palo Alto, USA) before and 1, 3, 7 days after LAD occlusion. MRI methods enclosed of gradient echo multi-slice (short axis) and single slice (long axis) cine sequences (TR/TE=10/2.7ms, 10 to 20 frames, slice thickness 1.2 mm, 7 to 8 slices, FOV=30x30 mm², and 128x128 matrix size), and continuous wave (CW) T_{1p} measurements. CW spin-lock experiment consisted of adiabatic CW pulse [5] (spin-lock durations 0,18,36 and 54 ms, $\gamma B_1/(2\pi)=1.25$ kHz) between double (cardiac and respiratory) trigger, and spin-echo readout (TR/TE=2000/8 ms, FOV=30x30 mm², 128x128 matrix size, slice thickness 1.5 mm). T_{1p} relaxation time maps were reconstructed based on mono-exponential decay model. The average T_{1p} values were calculated on the infarcted and reference myocardium based on cine images. Two-way ANOVA was used for T_{1p} comparison and one-way ANOVA was used for other comparisons. Histology of the heart, which was stained with Masson's trichrome, was performed to measure the infarction size.

Results and Discussion The increase of spin-lock duration results more signal loss in healthy myocardium than in infarcted area, which is clearly visible in T_{1p} map (Fig.1). Significant increase in T_{1p} was found at 7th day after infarction (Fig. 2) and T_{1p} continued to increase until day 20 ($p<0.01$). An increasing trend was found in reference (noninfarcted) area ($p=0.09$). The significant difference in T_{1p} was noticed between infarcted and reference myocardium at both 7th and 20th days after myocardial infarction ($p<0.001$ and $p < 0.05$). In earlier study, necrotic tissue was found to be replaced by granulation tissue completely 7 days after infarction in mouse myocardial infarction following by a formation of scar tissue [1]. The time scale of granulation and scar tissue formations fits with T_{1p} increase serving most likely the reasons for T_{1p} increase. The 20% decrease between before and 1 day after infarction ($p<0.05$) in ejection fraction together with the infarction size measured with MRI ($32.6 \pm 7.3\%$ (mean \pm SEM) and with histology ($27.6 \pm 6.1\%$) confirmed infarctions. The presented data shows that, T_{1p} can be mapped in mouse myocardium in vivo and T_{1p} is shown to increase after infarction. The longitudinal characterization of T_{1p} opens up possibilities to follow up the therapeutic agents' responses such as gene therapy responses and might provide diagnostic marker for tissue viability and damage.

References [1] Virag JK, Murry CE, AJP, 163: 6 (2003). [2] G Ertl, S Frantz, Cardiovas Res, 66: 22– 32 (2005). [3] Gröhn et al, JCBFM, 20: 1457-66 (2000). [4] Hakumaki et al, Cancer Gene Ther 9: 338-45 (2002). [5] Withey et al., MRM 64: 1453-60 (2010). [5] Gröhn et al, MRM 49: 172–176 (2003).

Acknowledgements We like to thank for the support given by the funding agencies – Academy of Finland, Sigrid Juselius Foundation, Instrumentarium Science foundation and the Finnish Funding Agency for Technology and Innovation.