Optimization of the MR acquisition parameters for quantitative measurement of brain iron in Alzheimer's disease
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Introduction: Alzheimer’s disease (AD) is estimated to affect approximately 22 million people globally and accounts for more than 60% of all dementia cases [1]. AD
is typically identified after the onset of neuropathological symptoms. Biomarkers whose manifestation precedes the symptoms can enable preemptive intervention.
Neuroscience research points towards the role of iron in the pathogenesis of AD, and accurate quantification of brain iron would be useful in early diagnosis [2, 3] . Iron
accumulation alters the MR characteristics of the brain tissue which is assessed through the quantitative measurement of surrogate biomarkers such as Ty, T, and T, [4,
5]. The purpose of this work is to optimize the MR acquisition parameters for quantitative measurement of brain T, values through the use of Cramér-Rao bound (CRB)
analysis [6]. CRB theory allows the determination of the smallest possible variance on the parameter estimates from any unbiased estimator [6, 7]. The noise
performance (minimum standard-deviation on T, estimates) at different acquisition parameters was analyzed at different signal-to-noise ratios (SNR) and at different T,
values to determine the optimal echo-times for measuring brain iron.

Theory and Methods: The signal model, s(#), considered for the CRB analysis is shown in Equation 1, where M is the bulk magnetization vector, 7> is the transverse
relaxation time and 7 is additive noise. The analysis shown in the reminder of this work is independent of magnet field strength and is applicable for both spin-echo and
gradient-echo imaging, with the replacememt of 7, with T, for gradient-echo. The distribution of noise in an MR magnitude image is Rician (square root of sum-of-
squares of the Gaussian noise on the real and imaginary channels) in nature. However, for a SNR greater than 10, Rician noise can be approximated to have a Gaussian
distribution. In this work noise performance was analyzed for SNR greater than 10; hence, for the CRB computations a Gaussian noise model was assumed.
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Equations 2-6 show the matrix representation of signal model for two measurements at first-echo time (7E,) and second echo-time (7E,). The equations for the four

elements (indexed 11, 12, 21, 22) of the Fisher information matrix (FIM) used for CRB computations are shown in Equations 7-9. The Cramér-Rao lower bound

(CRLB) of T, was obtained by calculating the inverse of FIM. The CRLB for 7, was computed with varying inputs of 7E;, TE,, SNR and 7> values. In this work, SNR

of X means an M value of X and noise with unity standard-deviation (SD) on the signal acquired at the first and second echoes.
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