

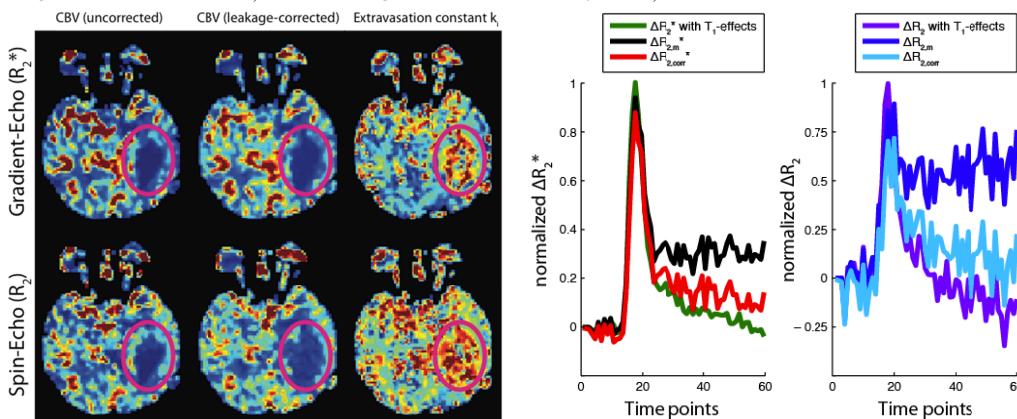
Spin- and Gradient-echo PWI with correction for T1- and T2(*)-related contrast agent extravasation effects

Heiko Schmiedeskamp¹, Matus Straka¹, Thomas Christen¹, Jalal B. Andre², Seema Nagpal³, Laurence Recht³, Reena P. Thomas³, Michael E. Moseley¹, Greg Zaharchuk¹, and Roland Bammer¹

¹Department of Radiology, Stanford University, Stanford, CA, United States, ²Department of Radiology, University of Washington, Seattle, WA, United States,

³Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States

INTRODUCTION – It has been shown that multiecho DSC-PWI is insensitive to T₁-shortening effects that are caused by the leakage of Gadolinium-based contrast agent (CA) into the extravascular-extracellular space (EES) [1-3]. However, CA leakage into the EES also affects R₂* and R₂ [4,5], resulting in a violation of the central volume principle used in R₂(*)-weighted DSC-PWI. Thus, estimation errors in CBV and other perfusion parameters could arise from altered CA distribution volumes. The purpose of this study was to correct multiecho spin- and gradient-echo (SAGE) EPI-based perfusion data [6,7] for R₂*- and R₂-related CA extravasation effects. Simultaneously, an additional parameter k_i was determined, which characterizes CA transfer between the intravascular plasma space (IPS) and the EES.

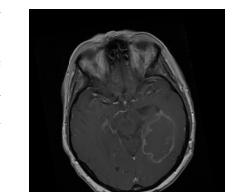

THEORY & METHODS – The relationship between changes in CA concentration and $\Delta R_{2,m}^{(*)}$ is shown in Eq. 1. Here, $\Delta R_{2,m}^{(*)}$ is the measured total change in R₂(*), $\Delta R_{2,p}^{(*)}$ is the IPS component, and $\Delta R_{2,e}^{(*)}$ is the EES component. The parameters v_p and v_e represent the volume fractions of the IPS and the EES, respectively; C_p and C_e denote the corresponding CA concentrations. In this work, we applied a simplified model that separates susceptibility effects emanating from CA within the IPS and CA within the EES, as used in [4,8] (cf. Eq. 1). In contrast to previous work, we assumed different transversal relaxivities r_{2,p}(*) and r_{2,e}(*) for the two compartments because of profound structural differences between the IPS and the EES. Eq. 2 can be derived from Eq. 1 under the assumption of unidirectional flow from the IPS to the EES and C_e << C_p for the duration of the acquisition [9,10]. In Eq. 2, K^{trans} is the volume transfer constant between the IPS and the EES that cannot be directly determined using our approach. Instead, a proportional parameter k_i = K^{trans}/v_p · r_{2,e}(*)/r_{2,p}(*) results. According to Ref. [11], a two-step approach to leakage correction can be applied, which first assumes a linear relationship between $\Delta R_{2,p}^{(*)}$ and total CA concentration C_t within each voxel, as well as a linear relationship between the integral of $\Delta R_{2,p}^{(*)}$ and the integral of the arterial input function C_a, which leads to Eq. 3. The residue function R can be derived using deconvolution of Eq. 3 via singular-value decomposition [11,12]; R is then used to determine $\Delta R_{2,est}^{(*)}$, an estimate for $\Delta R_{2,p}^{(*)}$. Subsequently, a least-squares approach can be applied to determine the relative contributions of $\Delta R_{2,est}^{(*)}$ and its integral to measured $\Delta R_{2,m}^{(*)}$, resulting in k and k_i. Finally, $\Delta R_{2,est}^{(*)}$ and k_i are used to determine the leakage-corrected $\Delta R_{2,corr}^{(*)}$ (cf. Eq. 4).

$$\Delta R_{2,m}^{(*)} = \Delta R_{2,p}^{(*)} + \Delta R_{2,e}^{(*)} = r_{2,p}^{(*)} \cdot C_p \cdot v_p + r_{2,e}^{(*)} \cdot C_e \cdot v_e \quad (1)$$

$$\Delta R_{2,m}^{(*)} = \Delta R_{2,p}^{(*)} + r_{2,e}^{(*)} \cdot K^{trans} \cdot \int_0^t C_p(\tau) d\tau = \Delta R_{2,p}^{(*)} + \frac{r_{2,e}^{(*)}}{r_{2,p}^{(*)}} \cdot \frac{1}{v_p} \cdot K^{trans} \cdot \int_0^t \Delta R_{2,p}^{(*)}(\tau) d\tau \quad (2)$$

$$\Delta R_{2,m}^{(*)}(t) \approx a_1 \cdot C_t(t) + a_2 \cdot \int_0^t C_a(\tau) d\tau = \int_0^t a_1 R(t-\tau) \cdot C_a(\tau) d\tau + a_2 \cdot \int_0^t C_a(\tau) d\tau \quad (3)$$

$$\Delta R_{2,m}^{(*)} = k \cdot \Delta R_{2,est}^{(*)} + k_i \cdot \int_0^t \Delta R_{2,est}^{(*)}(\tau) d\tau \quad \text{and} \quad \Delta R_{2,corr}^{(*)} = \Delta R_{2,m}^{(*)} - k_i \cdot \int_0^t \Delta R_{2,est}^{(*)}(\tau) d\tau \quad (4)$$


Fig.1: Patient with confirmed GBM, treated with chemorad. therapy and bevacizumab. Uncorrected (uncorrected single-echo PWI), $\Delta R_{2,m}^{(*)}$ (multiecho and corr. R₂*-&R₂-weighted CBV and k_i are shown. PWI), and $\Delta R_{2,corr}^{(*)}$ (leakage-corr. multiecho PWI)

Specifically, the maps demonstrated differences in uncorrected vs. leakage-corrected CBV at the rim of the tumor, originating from CA extravasation. The low CBV within the tumor shown here was caused by the anti-angiogenic effect of bevacizumab. The plots in Fig. 2 illustrate $\Delta R_{2,*}$ and ΔR_2 in a selected ROI within the tumor. With the suggested correction method, lower post-contrast values of both $\Delta R_{2,corr}^{(*)}$ and $\Delta R_{2,corr}^{(*)}$ resulted. CA leakage was verified in a post-contrast T₁-weighted image (cf. Fig. 3). The extravasation constant k_i (Fig. 1) showed elevated leakage within the tumor. Averaged over all 5 subjects, k_i within a tumor ROI was 105% and 29% larger relative to the whole-brain average using R₂*- and R₂-based processing, respectively. Average tumor CBV in all 5 patients was 15% (11%) lower when using leakage-corrected R₂* (R₂) processing.

DISCUSSION – We were able to correct SAGE DSC-PWI acquisitions for R₂*- and R₂-related leakage effects. Although multiecho sequences are insensitive to T₁-related CA extravasation effects, PWI processing can be biased by R₂*- and R₂-effects. In this study, an approach used to correct for T₁-effects [11] was adjusted to account for R₂*- and R₂-related leakage effects. To our knowledge, this is the first approach presenting a correction for T₁- and R₂(*)-related extravasation effects in combined GE and SE DSC-PWI. Separation of $\Delta R_{2,e}^{(*)}$ from $\Delta R_{2,p}^{(*)}$ was achieved through pharmacokinetic modeling of CA passage. Hereby, a leakage constant k_i was derived, facilitating improved assessment of brain tumors with DSC-PWI. In 5 patients, CA extravasation in tumor resulted in elevated k_i and altered CBV using the presented correction method.

REFERENCES – [1] Miyati, et al. JMRI 1997;7:230-35. [2] Vonken, et al. JMRI 1999;10:109-17. [3] Uematsu, et al. Radiol 2000;214:912-17. [4] Vonken, et al. MRM 2000;43:820-27. [5] Paulson, et al. Radiol 2008;249:601-13. [6] Newbould, et al. Proc. ISMRM 2007, p1451. [7] Schmiedeskamp, et al. Proc. ISMRM 2011, p788. [8] Liu, et al. Med Phys 2011;38:802-9. [9] Patlak, et al. J Cereb Blood Flow Metab 1983;3:1-7. [10] Tofts, et al. JMRI 1999;10:223-32. [11] Quarles, et al. Magn Reson Med 2005;53:1307-16. [12] Ostergaard, et al. MRM 1996;36:715-25. [13] Straka, et al. JMRI 2010;32:1024-37.

ACKNOWLEDGEMENTS – NIH (R01EB002711, R01EB008706, R01EB006526, R21EB006860, P41RR009784), Lucas & Oak Foundations.

Fig.3: T₁-w post CA image of patient 1.