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Introduction: The quantification of brain atrophy with MRI is vital for understanding the normal aging brain as well as understanding and treating people affected by 
neurodegenerative diseases such as Alzheimer’s disease and multiple sclerosis. Although several cross-sectional and longitudinal methods exist for the quantification of 
atrophy [1], SIENA and its cross-sectional counterpart SIENAx [2-3] are currently the most widely used in research and in clinical trials. SIENA has been shown to be 
robust and accurate (0.15% error) [3], but provides a measure only of whole brain atrophy. SIENAx, on the other hand, provides tissue-specific volumes, but computing 
change from serial cross-sectional measurements is much less precise (0.5-1% error) [3]. We propose a method to combine the sensitivity of SIENA with the tissue 
classification feature of SIENAx for a more accurate and precise measurement of tissue-specific atrophy. 
 

Methods: Brain tissue volumes normalized for subject head size were estimated using SIENAx. In addition to a whole brain volume (WB), separate estimates of grey 
matter (GM), white matter (WM), and cortical grey matter (cGM) were obtained. SIENAx was run at each timepoint, and the serial change between the two timepoints 
was calculated as a simple percent difference of the cross-sectional measures. Where applicable, SIENAx was run with the lesion masking option to account for 
erroneous WM lesion misclassifications. 
 

Our proposed longitudinal method for detecting change relies on the tissue volume output from SIENAx but also on the percent brain volume change (PBVC) output 
from SIENA. To calculate the longitudinal change in GM, for example, we calculate the percent difference between the normalized GM volume at each timepoint. At 
the first timepoint, the volume is simply the normalized GM volume as output from SIENAx. At the subsequent timepoint, however, the GM volume is obtained by first 
estimating the normalized brain volume of the second timepoint, by multiplying the normalized brain volume of the first timepoint by (1+ PBVC/100), and then 
multiplying by the GM fraction obtained at the second timepoint (i.e., GM volume/WB volume). The algorithm is illustrated in Figure 1. 
 

For this study, two different T1-weighted images (T1w) were acquired for each dataset; one with 1.5mm thick slices (HIGHRES) and the other with the more clinically 
common 3mm slice thickness (LOWRES). Both had in plane resolutions of 0.97 mm2. 
 

A scan-rescan dataset was used to assess reproducibility.  For each scan-rescan pair, the subject was scanned, removed from the scanner, repositioned, and then 
immediately rescanned. (N=12 @ HIGHRES, N=10 @ LOWRES). To evaluate the accuracy of each technique, a known amount of atrophy was simulated by creating 
an “atrophied” version of the baseline image from the above scan-rescan dataset by replacing the brain with a scaled version of itself. Only the brain was scaled as skull 
size is used as a normalization factor within the method.  A global scaling of ~86% was achieved using a linear transform with a 0.95 scaling factor in each of the x, y, 
and z dimensions. (N=12 @ HIGHRES, N=10 @ LOWRES). Lastly, we used a clinically relevant dataset from a multi-centre clinical trial in which a certain degree of 
atrophy was expected but unknown. This dataset comprises subjects with relapsing remitting multiple sclerosis (RRMS) being treated with glatiramer acetate (with or 
without steroids) and scanned 3 years apart. (N=59 for both the LOWRES and HIGHRES sequences). 
 

Results: Reproducibility as assessed with the scan-rescan dataset revealed that, for the LOWRES dataset, the absolute error for our proposed longitudinal method was 
significantly lower than repeated cross-sectional measurements in the WM and WB tissue compartments (p=.019, p=.007, respectively), and trended towards 
significance for GM and cGM (p=.09). Interestingly, no such improvement was detected with the HIGHRES dataset. By contrast, each method performed qualitatively 
slightly worse when applied to the HIGHRES dataset compared to its LOWRES counterpart in terms of reproducibility. 
 

Detection of atrophy in each tissue compartment (cGM, GM, WM, WB) was significantly better (p<.01) in the simulated LOWRES dataset using our longitudinal 
method rather than repeated cross-sectional measurements (Figure 2). 
 

The LOWRES multi-centre clinical trial dataset of subjects with RRMS showed that over the three years there was a mean whole brain atrophy of -1.45% (SD=1.13), 
driven by GM atrophy (mean=-2.14%, SD=2.42%), particularly in the cGM compartment (mean=-2.50%, SD=2.57%) more so than in the WM (mean=-0.81%, 
SD=1.87%). Similar findings were obtained with the HIGHRES dataset. 
 

Discussion and Conclusions: While our method still uses SIENAx for tissue segmentation, and is thus subject to the error of that technique, we reduce our dependence 
on accurate and complete tissue segmentation by using only the ratio of the tissue of interest to the WB volume. The advantage becomes evident if the brain extraction 
at one timepoint were to include slightly less cortex than at the other timepoint. With a repeated cross-sectional measurement, the entirety of this error would appear as 
a smaller cGM volume at the second timepoint. With our longitudinal method, the cGM volume at the second timepoint would be reduced by only a fraction of this 
error. Also, the impact of geometric distortion is likely reduced by using a tissue fraction, since distortion-related fluctuations in the volume of each tissue should 
largely cancel out.  In addition, we further reduce the error inherent in SIENAx by using only a single normalization factor. As previously reported, SIENAx normalizes 
the tissues at each timepoint independently via registration to a template, and each normalization contributes its own error [3]. While one could use the un-normalized 
volumes to avoid this problem, scanner changes and patient z-shift positioning causing gradient distortions would not be accounted for [4]. 
 

In terms of both reproducibility and sensitivity, our results indicate that using a higher resolution acquisition provides no observable advantage for this purpose over the 
more clinically practical sequence with a 3mm slice thickness. Our longitudinal method was more reproducible than simply using repeated cross-sectional measures, 
and our method more accurately captured the simulated atrophy. From the application to the RRMS dataset, it appears that the atrophy in that group was driven more by 
atrophy in the GM compartment than in the WM.  
 

In summary, we present a longitudinal method to measure tissue-specific atrophy that is more precise and sensitive than serial cross-sectional measurements, and is 
applicable to the conventional-resolution T1w image typically obtained in clinical studies. 
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