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Introduction: MRI fat quantification has been shown to be an effective method for measuring body fat content. However, due to signal
intensity variations and anatomical complexity, most analysis requires at least some manual input and is often performed on only a subset of
collected data. Water and Fat separation techniques such as IDEAL [1] and Lava-Flex [2], (multi-point Dixon imaging) provide images of fat
and water that are perfectly registered. As a result, fat signal can be normalized using a Fat-to-Water ratio allowing adipose tissue to be
identified in vivo by its high fat fraction values [3]. Automated fat volume quantification from a quantitative fat fraction map has the ability
to yield accurate, reproducible results over complete imaging volumes. We propose a novel method for the automated quantification and
separation of Total Adipose Tissue (TAT), Subcutaneous Adipose Tissue (SAT), and Intra-Abdominal Adipose Tissue (IAAT).

Methods: Following REB approval and obtaining informed consent, in vivo data were obtained from 24 subjects, including 16 with non-
alcoholic fatty liver disease, and 8 healthy volunteers. Transverse abdominal images were collected using an investigational version of
IDEAL with varying parameters (General parameters: # echoes = 6, Echo Train Length = 3, 4-10 mm slice thickness, FOV = 48x38 cm, Scan
Time = 20 s, matrix = 192x192x28) and coils (Single-channel, 8-channel, and 32-channel) on a GE 3.0 T MR750 (GE Healthcare, Waukesha,
WI). In addition, transverse slices of the gluteus maximus and mid-thigh were available for 5 of the patients. Single slices at the L4, mid-
gluteus, and mid-thigh levels were segmented with both a manual and automated technique. Manual segmentation was performed using a
previously validated connected threshold approach on T2*-corrected fat images in imageJ [4]. Automated segmentation was completed as
follows (see also Figure 1). (1&2) A k-means algorithm was used on T2*-corrected fat images to separate total tissue volume from
background noise. The algorithm splits intensities on the fat-only images into 3 classes, and the lowest intensity class was discarded as noise
(air, bone, and water filled regions). (3) The higher intensity classes are converted into binary, and flood filled to create a tissue volume
mask. (4) Using the fat fraction map, pixels inside the volume mask with fat
fraction values higher than 60% are located using a connected-threshold
algorithm created to define the total adipose tissue (TAT) but exclude
unwanted lipids (e.g. bone marrow). (5) Conversely, tissues with high water
fractions inside the volume mask are found by locating fat fractions below
50%. The resulting water mask represents only water tissue proximal to the
SAT and serves as a general boundary of the peritoneum. (6) The water
mask is converted into polar coordinates such that the distal edge of the
tissue appears along the bottom of the image. (7) A 3D surface is then
fitted to the distal-most edge of the polar water mask, with caution to
constrain the smoothness so that areas without water tissue directly adjacent
to the subcutaneous fat are bridged. This surface is then converted back
into Cartesian coordinates and enclosed resulting in a mask of the intra-
abdominal cavity. This mask is then used to split the (4) TAT, into (8) SAT
and (9) IAAT. The volume of SAT and IAAT was calculated in litres and as
a percentage of the tissue volume mask.

Results: Automated segmentation agrees well with manual segmentation

Figure 1 - Automated Process: (1) Fat-only image (2) K-means
segmentation, (3) Volume Mask, (4) TAT, (5) Water Mask, (6)
Polar Water Mask, (7) Polar Distal Water Edge, (8) SAT, (9) IAAT
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channel acquisitions. Fat fractions also allow for
other lipid containing tissue such as bone
marrow, and hepatic fat to be omitted due to
their lower fat fraction values. Further work

Figure 2 - Mean fat volume values for
manual vs. automated segmentation
show excellent agreement. Error bars
show standard deviation in

Figure 3 - Bland Altman plot comparing manual vs.
automated segmentation for SAT, and IAAT. 95%

confidence interval lines are shown for SAT (solid)
and IAAT (dashed). The plot shows no bias in the

measurements. automated measurement of either SAT or IAAT. needs to_be completed to additionally segment
retro-peritoneal fat from IAAT.
Conclusions: We have demonstrated the ability to automatically segment regional adipose tissue using fat fraction maps, accurately

quantifying TAT, SAT, and IAAT. The results are very similar to those obtained by standard manual segmentation methods, but require no
manual intervention, are reproducible and can be calculated very rapidly over complete imaging volumes.
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