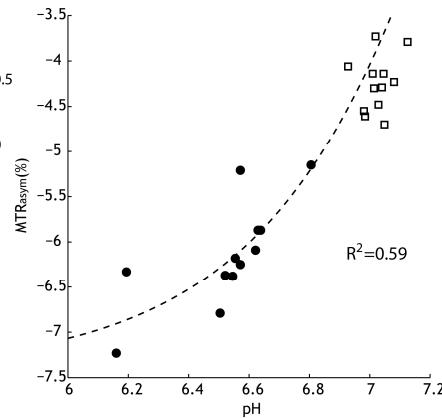

Imaging acute ischemic tissue acidosis with quantitative in vivo amide proton transfer (APT) MRI

Phillip Zhe Sun¹, Enfeng Wang¹, and Jerry S Cheung¹

¹Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States


Introduction Amide proton transfer (APT) imaging is sensitive to pH with significantly higher spatiotemporal resolution than spectroscopy¹⁻³. In vivo APT MRI contrast is often calculated using the magnetization transfer (MT) asymmetry analysis (MTR_{asym}), which is complex due to relaxation and concomitant RF irradiation effects. APT contrast approximately scales with T_1 relaxation time. In addition to the pH-dependent APT contrast, MTR_{asym} is susceptible to slightly asymmetric magnetization transfer effects⁴⁻⁶. Moreover, the experimentally obtained CEST MRI contrast strongly varies with RF irradiation power, which can be described using the saturation/labeling coefficient and RF spillover effects⁷. We postulated that tissue pH can be reasonably quantified from pH-weighted APT MRI by taking into account major concomitant RF irradiation effects.

Materials and Methods **Animal model:** Permanent middle cerebral artery occlusion (MCAO) was induced in adult male Wistar rats (n=12). **MRI:** All experiments were conducted at 4.7T within 90 min after MCAO. Point-resolved spectroscopy (PRESS) was obtained from a region of interest (ROI) of 3.5 mm^3 (TR/TE=2000/144ms, NA=512) within the DWI lesion. Multi-parametric perfusion, diffusion, pH-weighted APT, T_1 and T_2 MRI (5 slices, 2mm/slice) were obtained (FOV: 25x25mm, matrix: 64x64, bandwidth 200kHz). Specifically, we acquired perfusion (TR/TS/TE=6500/3250/14.8ms, NA=32)⁷, APT (NA1/NA2=8/32, TR/TE=6500/14.8ms)⁸, diffusion (TR/TE=3250/54ms, $b=250$ and 1000 s/mm^2 , NA=16)⁹, T_1 (inversion recovery, TI from 250 to 3000 ms, NA=4) and T_2 (SE MRI, TR/TE1/TE2=3250/30/100 ms, NA=16). We have $MTR_{asym} = \Delta MTR_{asym} + f \cdot k / (R_{1w} + f \cdot k) \cdot \alpha \cdot (1 - \sigma)$, where α is labeling coefficient, σ is the RF spillover effect, f and k are the amide proton concentration and exchange rate, and R_{1w} is the bulk tissue water relaxation time.

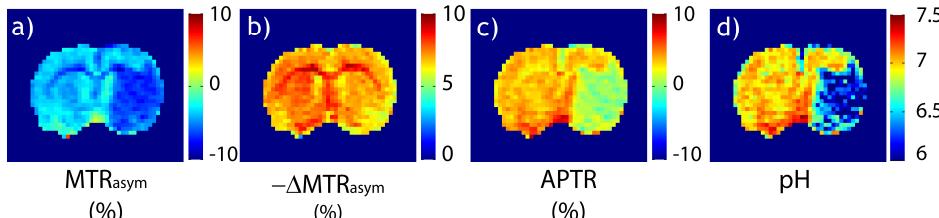


Fig. 1. Perfusion and diffusion MRI lesion of a representative MCAO animal.

Fig. 2. Numerical fitting of experimentally obtained MTR_{asym} as a function of tissue pH, estimated from quantitative lactate MRS.

The ipsilateral ischemic ROI-based MTR_{asym} is plotted as a function of pH in Fig. 2. The lactate concentration [Lac] was calculated from PRESS MRS, with Creatine and Choline concentration being 4.79 and 9.35 mmol/kg, respectively (Florian et al., 1996). Tissue pH was estimated from the lactate concentration at $pH = -0.0593 \cdot [Lac] + 7.2$, as shown by results of Chang et al.⁸ in vivo MTR_{asym} was negative due to the baseline shift of $\Delta MTR'_{asym}$. K_{sw} was calculated using $K_{sw} = 5.57 \cdot 10^{pH-6.4}$ and two parameters, $\Delta MTR'_{asym}$ and f , were numerically solved from Eq. 2, being -7.44% and 1:867, respectively. We calculated the contralateral normal tissue pH from quantitative APT MRI, and overlaid it in Fig. 2 (open squares). This shows that the proposed quantitative pH MRI can reasonably describe in vivo APT MRI contrast, both contralateral normal and ipsilateral ischemic regions.

Fig. 3. Derivation from pH-weighted MTR_{asym} (a), ΔMTR_{asym} shift (b), pH-weighted APT MRI (c) and quantitative tissue pH (d).

corpus callosum in the MTR_{asym} map. Fig. 3c shows the endogenous APT map (i.e., $APTR = MTR_{asym} - \Delta MTR'_{asym}$). Indeed, the pH map clearly depicts tissue acidification in the ischemic lesion (Fig. 3d). Ischemic tissue pH estimated from APT MRI was 6.44 ± 0.24 , in good agreement with that estimated from lactate MRS of 6.53 ± 0.18 . In comparison, the contralateral normal tissue pH was 7.03 ± 0.05 , and the pH difference between the ischemic and contralateral normal regions was -0.59 ± 0.22 ($P < 0.01$).

References 1) Zhou et al., Nat. Med 2003; 9:1085-90. 2) Jokivarsi et al, MRM 2007; 57 (4):647-53. 3) Sun et al. JCBFM 2011; 65:1743-50. 4) Pekar et al. MAM 1996;35:70-79. 5) Hua et al. MRM 2007;58:786-93. 6) Mougin et al. Neuroimage 2010;49:272-81. 7) Sun et al. MRM 2007;57:405-10. 8) Chang et al. MRM 1990;13:6-13.

Results and Discussion Fig. 1 shows CBF and ADC images from a representative stroke animal. CBF decreased from $2.3 \pm 0.54 \text{ ml/g.min}$ in the contralateral normal area to $1.13 \pm 0.57 \text{ ml/g.min}$ in the ischemic lesion, representing a relative decrease of $52 \pm 19\%$ ($P < 0.01$). pH-weighted MTR_{asym} was $-4.3 \pm 0.3\%$ in the contralateral normal ROI, which decreased to $-6.1 \pm 0.6\%$ upon ischemia ($P < 0.01$). In addition, ADC decreased from 0.72 ± 0.03 to $0.56 \pm 0.03 \mu\text{m}^2/\text{ms}$ ($P < 0.01$). Lactate was measured from an ROI within the ADC lesion. the ischemic lesion showed elevated lactate signal, with a Choline and Creatine normalized lactate peak (i.e., $Lac/(Cho+Cr)$) being 0.80 ± 0.21 .

Fig. 3. shows the calculation of quantitative tissue pH map from pH-weighted APT MRI. Because it has been shown that cerebral tissue R_{1w} increases with the MT contrast, the R_{1w} -scaled $\Delta MTR'_{asym}$ map was calculated (i.e., $\Delta MTR'_{asym} = -7.44\% \cdot 1.63/T_{1w}$), which displays hyperintense correction in corpus callosum (Fig. 3b). This effectively compensates the hypointensity over the