
Manganese-enhanced MRI in a mouse model of de- and remyelination

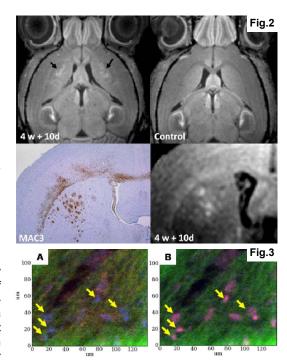
Susann Boretius^{1,2}, Tanja Ducic³, Angelika Escher⁴, Christine Stadelmann⁴, and Jens Frahm¹

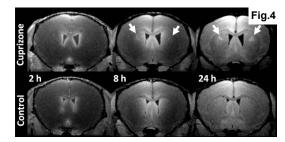
¹Biomedizinische NMR Forschungs GmbH, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany, ²Klinik für Diagnostische Radiologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany, ³Hasylab, DESY, Hamburg, Germany, ⁴Institute of Neuropathology, University Medical Center, Georg-August-University, Göttingen, Germany

Introduction: Due to their calcium-like behavior and shortening of T1 manganese ions (Mn^{2+}) are widely used in experimental animal research to visualize brain structures, neuronal activity and connectivity [1]. However, only little is known about Mn^{2+} accumulation under pathological conditions. Here we took advantage of the well characterized mouse model of cuprizone-induced toxic de- and remyelination [2] and analyzed the Mn^{2+} accumulation in the brain by in vivo MRI at different time points of cuprizone treatment. Selected tissue samples were analyzed by synchroton based X-ray fluorescence microscopy.

Methods: Twelve C57BL/6 mice at the age of 8 weeks were fed with 0.25% cuprizone in ground breeder chow *ad libitum* over 2 weeks (group A, n = 4) and 4 weeks (groups B and C, n = 4 each), respectively. After withdrawal of cuprizone, group C received normal food for additional 10 days. Two additional mice served as controls and were maintained on a normal diet for the duration of the experiment. At the respective end of treatment MRI was performed on isoflurane-anesthetized mice before and 24 h after MnCl₂ (40 mg/Kg, i.p.) administration using a 3D spoiled FLASH sequence (TR/TE=17/3.6 ms, flip angle 25°, 100 μm isotropic resolution). In addition, one mouse per group underwent MRI at 2 h and 8 h after Mn²⁺ injection. All measurements were performed at 9.4 T (Bruker Bio Spin, Germany). After MRI, mice were sacrificed for histology including immunohistochemical staining of amyloid precursor protein (APP), anti-glial fibrillary acidic protein (GFAP), CD3+, and MAC3+ cells.

Results and Discussion: Compared to controls (**Fig. 1**, **control**) no alterations of Mn^{2+} distribution were observed at 2 weeks of cuprizone treatment (**Fig. 1**, **2w**).


In contrast, after 4 weeks of treatment, 24 h after Mn²⁺ administration a distinct signal enhancement was observed mainly at the anterior commissure and the outer layers of the corpus callosum (**Fig. 1, 4w**, arrows).


After 10 days of recovery and remyelination this signal enhancement was decreased (**Fig. 1, 4w+10d**, arrows). At that time point distinct accumulations of Mn²⁺ appeared in the striatum as shown in a horizontal section (**Fig 2. 4w+10 d**, arrows).

This pattern of signal enhancement after Mn²⁺ administration was correlated with microglia activation (**Fig. 2**, bottom left: MAC3 staining, right: MRI 24 h after Mn²⁺).

Synchroton based X-ray fluorescence microscopy revealed a point-shaped, cell-body like accumulation of Mn^{2^+} (Fig. 3 A, arrows, Mn – blue, Fe – red) and a colocalization with Ca^{2^+} (Fig. 3 B, arrows, Mn – blue, Ca – red). The fact that MRI signal enhancement was first observed at about 8 h after Mn^{2^+} injection, indicates an unaffected permeability of the blood brain barrier for Mn^{2^+} (Fig. 4).

Summary: Mn²⁺-enhanced MRI revealed a distinct Mn²⁺ accumulation in specific brain regions that refers to activated microglia cells as evidenced by immunohistochemistry. X-ray fluorescence spectroscopy demonstrated a co-localization of manganese with calcium in cell-body like structures that most likely represent microglia cells and no accumulation in neuronal fibers. Although Mn²⁺ is often used to measure neuronal activity, a possible bias in animal models with inflammation has to be taken into account. The specific accumulation of manganese indicates that manganese-enhanced MRI may significantly contribute to the understanding of immune-mediated diseases in the CNS and potentially also in other tissues.

References: [1] Boretius et al, Methods Mol Biol., 2011; [2] Matsushima et al, Brain Pathol., 2001