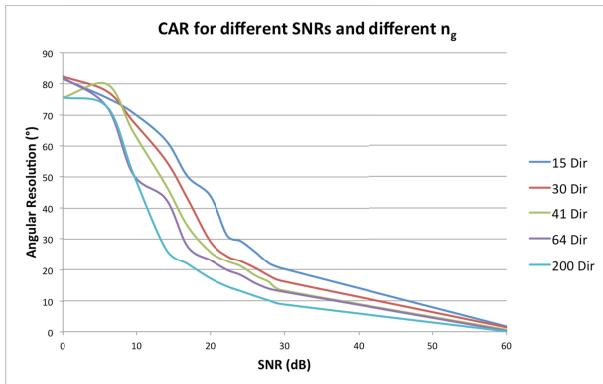
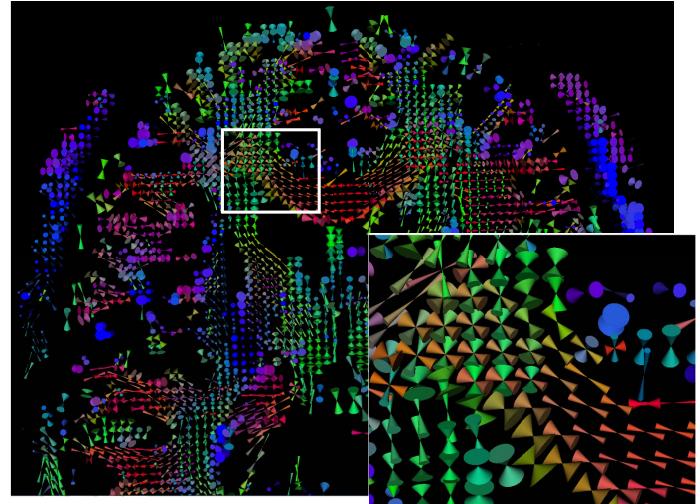


## A new multi-directional fiber model for low angular resolution diffusion imaging


Aymeric Stamm<sup>1</sup>, Patrick Pérez<sup>2</sup>, and Christian Barillot<sup>1</sup>

<sup>1</sup>Visages INSERM/INRIA U746, IRISA - UMR CNRS 6074, Rennes, France, <sup>2</sup>Technicolor, Rennes, France


**Introduction:** Diffusion MRI (dMRI) permits to infer the ensemble average propagator (EAP) from a set of diffusion-weighted (DW) images acquired from  $n_g$  gradient directions and  $n_b$  b-values. In the context of clinical brain imaging, dMRI sequences seldom exceed 10 minutes acquisition, with  $n_g \leq 30$  and only one b-value. The EAP is then inferred from the resulting low angular resolution diffusion (LARD) images by assuming a Gaussian diffusion profile [1]. In research context, higher angular resolution samplings ( $n_g \geq 60$  and  $n_b \geq 1$ ) [2,3,4] have revealed a non-Gaussian diffusion profile in the white matter when fibers cross. To account for that effect, we propose a non-Gaussian parametric modeling of the EAP, the estimation of which can be accurately performed from LARD images obtained in clinical context.

**Theory:** In each voxel, the EAP is modeled as a mixture. Each probability density function (pdf) in the mixture characterizes the diffusion along some fiber orientation (FO)  $\pm \mu$ ,  $||\mu||=1$ , and is in turn modeled as a mixture of two equally weighted pdfs that account for the diffusion along directions  $\mu$  and  $-\mu$  respectively. The diffusion pdf along direction  $\mu$  is given by the convolution of a von Mises & Fisher pdf on the sphere of radius  $R>0$  (mean covered distance), with mean direction  $\mu$  and concentration (around  $\mu$ ) parameter  $\kappa \geq 0$ , and a centered 3D Gaussian pdf with covariance matrix  $D=R^2(I_3+\kappa\mu\mu^T)/(\kappa+1)$  (cylindrical shape). Crossing fibers are consequently characterized by 8 parameters. The Fourier transform of the EAP is analytically derived as a function of the parameters of the model and yields the theoretical DW intensity [5]. The estimation of these parameters is then performed by a least squares fitting of the observed DW intensities to the theoretical ones.

**Methods:** An evaluation of the crossing angle resolution (CAR) of the model was first performed using synthetic data on a single voxel. These data were generated as in [6] for different configurations of the two FOs with  $b = 1500\text{s/mm}^2$  and  $n_g=15, 30, 41, 64$  and  $200$ . The resulting data sets were then corrupted with increasing Rician noise and, for each noise level  $\sigma$ , 100 samples were synthetized. For a given  $n_g$  and  $\sigma$ , the CAR was computed as the 95% confidence angle between the two estimated FOs in situations where the real FOs are collinear. A healthy adult male was scanned on a 3T Achieva Philips MRI Scanner with a 8-ch head coil,  $TR/TE/\tau = 10000/64/22.1\text{ms}$ ,  $b=800\text{s/mm}^2$ ,  $n_g=15$  and  $2 \times 2 \times 2 \text{mm}^3$  voxels. This set of DW images represents a typical case of LARD images with low spatial resolution from which our model of the EAP was estimated.



**Results:** Figure on the left shows the CAR of the model for increasing signal-to-noise ratios (SNR). Each curve corresponds to a given  $n_g$ . For low SNRs, increasing  $n_g$  does not significantly improve the CAR. For typical clinical values of  $\text{SNR} = 20\text{dB}$  and  $n_g=30$ , the corresponding CAR of  $30^\circ$  outperforms the CAR obtained in Q-Ball Imaging [7], i.e. around  $60^\circ$  for higher angular resolution ( $n_g=81$ ) [8]. Figure on the bottom shows an extremity of the corpus callosum known to contain crossing fibers (the height of the cones is proportional to  $R^2$  while the radius is proportional to  $1/(\kappa+1)$ ). Fiber crossings seem to be accurately estimated despite the low angular and spatial resolutions.



**Discussion:** This model enables crossing fibers to be theoretically estimated from only 8 DW images. In particular, this model allows for the retrospective study of DW data sets acquired over the past years. For a complete applicability in clinics, one could wonder whether maps akin to the fractional anisotropy (FA) and mean diffusivity (MD) maps [9] can be provided with this model. For a given FO, based on the Gaussian part of our model and by analogy with DTI, we propose  $FA = \kappa((\kappa+1)^2+2)^{-1/2}$  and  $MD = (1+\kappa/3) R^2/(1+\kappa)$ .

**References:** [1] Basser et al., *Biophys. J.* 66/1, 259-67, 1994 [2] Wedeen et al., *MRM* 54, 1377-86, 2005 [3] Descoteaux et al., *MEDIA*, 1-19, 2010 [4] Tuch et al., *MRM* 48, 577-82, 2002 [5] P.T. Callaghan, 1991 [6] Barmoutis et al., *IPMI* 21, 338-49, 2009 [7] D. Tuch, *MRM* 52/6, 1358-72, 2004 [8] Descoteaux et al., *MRM* 58, 497-510, 2007 [9] Basser et al., *J. Magn. Reson. B*-111, 209-19, 1996.