Improved Q-Ball imaging using a 300 mT/m human gradient

Julien Cohen-Adad¹, M Dylan Tisdall¹, Ralph Kimmlingen², Eva Eberlein², Thomas Witzel¹, Philipp Hoecht², Boris Keil¹, Juergen Nistler², Dietmar Lehne², Keith Heberlein³, Jennifer A McNab¹, Herbert Thein², Franz Schmitt², Bruce R Rosen¹, Van J Wedeen¹, and Lawrence L Wald^{1,4}

¹A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States, ²Siemens Healthcare, Erlangen, Germany, ³Siemens Healthcare, Boston, United States, ⁴Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, MA, United States

Introduction. The ability to depict white matter microstructure using high angular resolution diffusion imaging (HARDI) is limited by the SNR of diffusion-weighted images and by the gradient strength in current clinical systems. Limited gradient strength results in a long TE at high b-values and considerable loss of SNR due to T₂ dephasing. Thus, while a higher b-value, in principle will encode higher detail in the orientation distribution function (ODF), this has not been possible due to the reduced SNR at higher b-value. In this work we use a new gradient system specifically designed to achieve ultra-high gradient strength (Gmax = 300 mT/m , about 7.5 fold stronger than clinical scanners) to shorten the diffusion-encoding gradient and thereby decrease the echo time (TE), yielding significant gains in SNR. In addition, we developed a 64-channel receive array coil to further increase the SNR. We compare the *in vivo* HARDI data with Q-Ball reconstruction at variable gradient strengths and b-values up to 15000 s/mm² in human. The higher SNR is shown to provide improvements in ODF metrics such as the fiber uncertainty and FA.

Methods. <u>Acquisition</u>. A volunteer was scanned on a 3T MRI system (MAGNETOM Skyra, 64 receive channels, Siemens Healthcare, Germany) equipped with a <u>Connectom Gradient</u> (AS302†) system capable of up to 300 mT/m and slew rate of 200 mT/m/ms. The slew rate was derated during the diffusion encoding to prevent physiological stimulation. A custom-made 64-channel phased array coil was used for signal reception. We compared two datasets acquired with a single-refocusing EPI sequence: 1) b=10000 s/mm² Q-ball with G_{max}= 300 mT/m allowing a TE of 51 ms and 2) the conventional Gmax=40mT/m providing a minimum TE of 117 ms. Common parameters were: TR=3000ms, 20 slices, FOV=220, partial Fourier=6/8, R=3 (with GRAPPA), 1.5mm isotropic, b=10000 s/mm², 200 directions (electrostatic repulsion), BW=1902 Hz/pix, echo spacing = 0.63. Additionally, we compared different b-values of b=1000 (TE=46ms), 5000 (TE=51ms), 10000 (TE=51ms) and 15000 s/mm² (TE=54ms) at Gmax=300 mT/m. <u>Processing</u>. Data were corrected for motion (along with the b-matrix) using b=0 images interspersed every 15 volumes. All datasets were coregistered to allow direct comparison. Diffusion tensors and 95% angular uncertainty of the first and secondary directions were obtained using FSL BedpostX [1]. Q-Ball ODF were reconstructed using spherical harmonics [2] of order 6 (regularization parameter = 0.006, no sharpening applied).

Results. Figure 1 shows diffusion tensors and uncertainty measures for G_{max} =40 and 300mT/m for a b-value of 10000 s/mm². The 300mT/m dataset shows lower uncertainty of the first and secondary directions. Figure 2 shows increased robustness and accuracy of the ODFs at 300mT/m. Figure 3 compares Gmax=300mT/m data acquired at b-values ranging from 1000 to 15000 s/mm². Improvement of the b=10000 over b=1000/5000 could be seen on the 2nd row, where a secondary direction is better depicted. At b=15000 a third direction appears (middle row), although it remains unclear if this is genuine fiber architecture or artefactual noise contribution.

Discussion. This study presents the first *in vivo* human diffusion-weighted data acquired at G_{max} =300 mT/m. In comparison with the clinical systems, these gradients enable a significant reduction in TE providing substantial gain in SNR and improved Q-ball reconstruction. At b=10000 s/mm², TE is reduced by 66ms, corresponding to 2.3× SNR increase (assuming T_2 of 80 ms). Higher b-values yielded higher angular resolution as predicted by theoretical models [3].

† Works in Progress. The information about this product is preliminary. The product is under development and is not commercially available in the U.S. and its future availability cannot be assured.

→ Figure 1. Diffusion-weighted image and DTI/uncertainty measures for G_{max} =300 and G_{max} =40 for a b-value of 10000 s/mm².

References. [1] Behrens, T.E., et al., Magn Reson Med, 2003. **50**(5): p. 1077-88. [2] Descoteaux, M., et al., Magn Reson Med, 2007. **58**(3): p. 497-510. [3] Cho, K.-H., et al., Neuroimage, 2008. **42**(1): p. 262-71.

Achnowledgments. Study funded by the NIH Blueprint for Neuroscience Research: U01MH093765, NIH NCRR P41 RR14075, NIBIB R01EB006847 and National MS Society [FG1892A1/1].

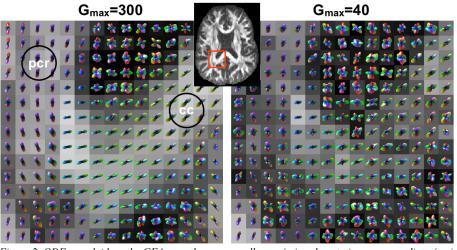
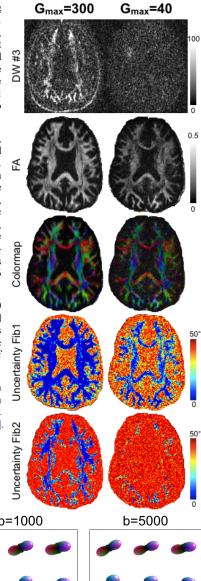



Figure 2. ODFs overlaid on the GFA over the corpus callosum (cc) and posterior corona radiata (pcr). Data acquired with $G_{max}=300$ mT/m provides more accurate and robust ODFs.

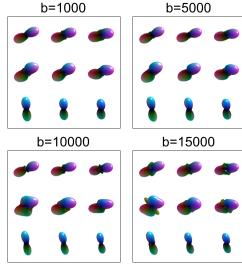


Figure 3. ODFs centered at the intersection between cc and pcr for b-values ranging from 1000 to 15000 s/mm² acquired with G_{max} =300 mT/m.