

Oxygen-Enhanced MRI and BOLD in the human placenta

Isaac Huen^{1,2}, David M. Morris^{1,2}, Caroline Wright³, Colin P. Sibley³, Edward Johnstone³, and Josephine H. Naish^{1,2}

¹Imaging Sciences and Biomedical Engineering, University of Manchester, Manchester, United Kingdom, ²The University of Manchester Biomedical Imaging Institute, University of Manchester, Manchester, United Kingdom, ³Maternal & Fetal Health Research Centre, University of Manchester, Manchester, United Kingdom

Background: Preeclampsia and Fetal Growth Restriction are common pregnancy complications which cause maternal and fetal morbidity and mortality. Theories suggest that both are caused by a compromised placental phenotype[1, 2] which could affect placental oxygen delivery. Previously obtained data on the placental oxygen environment is restricted to measuring partial pressure of dissolved oxygen (PO_2) invasively in the first trimester only [3]. MRI allows us to non-invasively obtain new information informing us about the oxygen environment. In this study we apply two MRI techniques under hyperoxia challenge to obtain complementary data on placental oxygen delivery: Oxygen-Enhanced MRI (OE-MRI) and BOLD. OE-MRI is sensitive to changes in PO_2 via T_1 quantification. Dissolved molecular oxygen causes T_1 shortening, with an increase in ΔR_1 ($R_1 = 1/T_1$). BOLD is sensitive to changes in hemoglobin saturation (SO_2) via T_2^* quantification, with a decrease in ΔR_2^* ($R_2^* = 1/T_2^*$) indicative of an increase in SO_2 in the absence of blood flow changes. Increases in SO_2 also have an effect of decreasing ΔR_1 . We report preliminary placental OE-MRI and BOLD data acquired during normal pregnancy under hyperoxia challenge. **Methods:** MR imaging was carried out with a 1.5T Philips Intera system (Philips Medical Systems, Best, NL) in 10 subjects during the 3rd trimester of normal pregnancy. To investigate possible differences in oxygenation along the maternal-fetal axis of the placenta, each patient was acquired in either an in-plane view parallel to the placental plane (4 subjects), or a through-plane view perpendicular to it (6 subjects). Static T_1 maps were acquired in a single coronal slice through the placenta during periods of breathing medical air (21% oxygen) and 100% oxygen using a respiratory-triggered inversion recovery-HASTE (IR-HASTE) sequence with 4 inversion times ($TI=50, 300, 1100, 2000$ ms) combined with a respiratory-triggered HASTE sequence (with no inversion pulse) to provide an estimate of M_0 . $TR=TI+8000$ ms, $TE=5.4$ ms. Each TI was acquired with at least 2 repeats to improve SNR. Static T_2^* maps were acquired using a breathhold multiple gradient-recalled echo (mGRE) sequence with 10 equally spaced echo times ($TE = 5-50$ ms). For both sequences Matrix=128 x 128; FOV=450x450 mm; slice thickness = 10mm. T_1 maps for air and oxygen breathing were obtained by fitting the inversion recovery equation to magnitude-reconstructed signal, using a fixed inversion efficiency derived from an initial three-parameter fit to magnitude-reconstructed signal. T_2^* maps were obtained by fitting the free induction decay equation to magnitude-reconstructed signal. Static parameter changes were then recorded as the median change between air and oxygen maps on a region of interest (ROI). Between the two static T_1 mapping acquisitions, a dynamic sequence of IR-HASTE scans was acquired for a total of 8 minutes at $TI=1100$ ms to record the evolution of R_1 against time. Triggering was introduced to remove through-plane motion. Using the air T_1 map as a baseline, ΔR_1 against time was calculated from each dynamic's mean signal in a ROI of placental tissue present through dynamic acquisition. The gas supply was switched at image 10. Gases were delivered throughout scanning at 15l/min with a non-rebreathing face-mask (Intersurgical, Wokingham, UK).

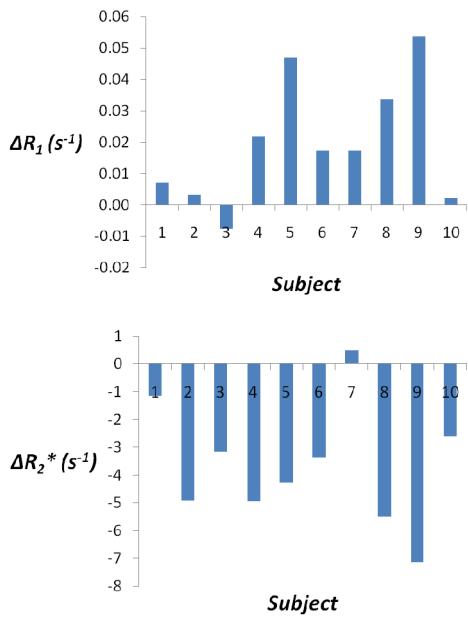


Figure 1. ΔR_1 and ΔR_2^* between air and oxygen.

Results: Median ΔR_1 and ΔR_2^* across a placental ROI are presented in Figure 1 for all subjects. Mean R_1 and R_2^* changes were both statistically significant across the group. Mean ΔR_1 was 0.0196 ± 0.0199 s^{-1} ($p = 0.015$) while mean ΔR_2^* was -3.65 ± 2.21 s^{-1} ($p = 0.003$). No correlation was found between ΔR_1 and ΔR_2^* . Placental ΔR_1 and ΔR_2^* maps for a through-plane view are presented in Figures 2 & 3 respectively. Mainly positive R_1 changes and mainly negative R_2^* changes were observed here. The dynamic ΔR_1 curve (Figure 4) shows an increase coincident with gas switchover. **Discussion:** We have presented results in 10 subjects demonstrating the feasibility of combining OE-MRI and BOLD measurements in the placenta to obtain information relating to placental oxygen delivery noninvasively. Significant mean increases in R_1 and mean decreases in R_2^* were observed. Increases in R_1 suggest increases in dissolved molecular oxygen concentration, while decreases in R_2^* suggest increases in hemoglobin saturation. These two results are consistent with observing uptake of oxygen in placental tissue. There was no correlation between the changes in R_1 and R_2^* and further studies are required to understand the relationship between these parameters in the placenta. Use of these techniques in compromised pregnancies may allow a comparison of the oxygenation state between normal and compromised pregnancy. Hence, the technique offers the possibility to investigate alterations in oxygen delivery in the placenta in preeclampsia and FGR.

Acknowledgements: This work was supported by The University of Manchester Biomedical Imaging Institute, The University of Manchester Magnetic Resonance Imaging Facility and the Manchester Wellcome Trust Clinical Research Facility. **References:** 1. Kanasaki, K. and R. Kalluri, *The biology of preeclampsia*. Kidney Int, 2009. 76(8): p. 831-7. 2. Sibley, C.P., et al., *Placental phenotypes of intrauterine growth*. Pediatr Res, 2005. 58(5): p. 827-32. 3. Jauniaux, E., et al., *Evaluation of respiratory gases and acid-base gradients in human fetal fluids and uteroplacental tissue between 7 and 16 weeks' gestation*. AJOG, 2001. 184(5): p. 998-1003.

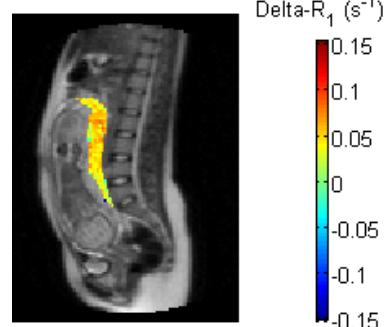


Figure 2. Placental R_1 changes in through-plane subject between air and 100% O_2 . Median ΔR_1 : 0.0173 s^{-1}

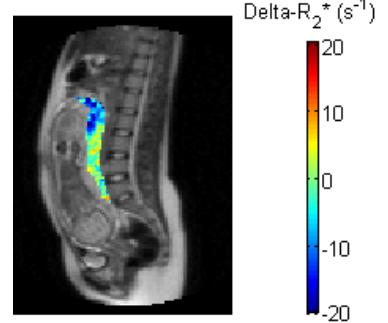


Figure 3. Placental R_2^* changes in through-plane subject between air and 100% O_2 . Median ΔR_2^* : -3.36 s^{-1}

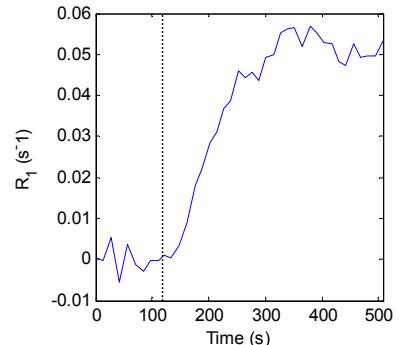


Figure 4. Placental dynamic R_1 changes in through-plane subject. Switch from medical air to 100% O_2 occurred at dynamic number 10 (line).