Diffusion tensor magnetic resonance tractography of the prostate: feasibility for mapping neurovascular anatomy
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Introduction

Definitive treatment of prostate cancer involves either surgery or radiation therapy. Although
advances in both have reduced the incidence of side effects, injury to the nerves that run
alongside the prostate can result in debilitating incontinence and impotence. Identification of
the neurovascular bundle is difficult even with optical magnification. This study looks at the
potential of diffusion tensor imaging as a potential solution.

Methods
Following Institutional Review Board approval, eight patients underwent multiparametric
endorectal MRI of the prostate on a 3.0 Tesla MR scanner including T2-weighted imaging
(TSE, TR 3800-5040 TE 101 ms, ETL 13, 3 mm, no gap, matrix 256 x 205, 14 x 14 cm FOV)
and diffusion tensor imaging using a twice-refocused echo-planar acquisition, 12 non-colinear
diffusion sensitizing directions, and and b values of 0 and 600 ™/s?. DTI tractography image
processing was performed using the Diffusion Toolkit version 0.6.1 and TrackVis version
0.5.1 (Ruopeng Wang, Van J. Wedeen, TrackVis.org, Martinos Center for Biomedical
Imaging, Massachusetts General Hospital). Spherical regions of interest (ROIs) with a radius
of 1.5mm (volume — 14.14 mm3) were used for evaluation of fiber tracts (e.g. tract number,
tract density) within the periprostatic space, based on evaluation of anatomic T2 images and
whole-mount prostatectomy specimens. Fiber tracts were constructed for each patient using an Figure 1: DTI tractography images of the
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patients. Figure 2: Fiber Tract Density by Region. A) Circular ideogram showing sector-based
. . histograms of tract density (fibers / mm) at the base (orange), mid (blue) and apex (green).

Discussion B) Fiber tract density in the apex. C) Fiber tract density in the mid region. D) Fiber tract

Although promising as a technique to guide surgery and density in the base region.
radiation therapy, this proof-of-concept study raises as many
questions as it answers, with preliminary findings suggesting a more complex anatomy than has been previously appreciated. Although DTI is
undoubtedly capturing some non-nerve fiber tracts (e.g. blood vessels) that run within the periprostatic space, it is probable that much of the fiber-
tract mass that we visualized represents nerve fibers.
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