
 
FIG 1: Per-iteration complexity of k-space 

and image-domain CPI (N=256, B=6).

FIG 2: Enlarged region-of-interests (a) for reconstructions from 3x 
undersampled 8-channel data: (b) fully-sampled, (c) zero-filling, (d) k-
space CPI, (e) CLEAR, (f) CLEAR with block-wise joint sparsity penal-
ty.  Coil images were combined via root-sum-of-squares.  
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Introduction: Auto-calibrated parallel imaging (PI) reconstruction strategies are typically formulated such that the target 
images and system model (e.g., the GRAPPA kernel [1]) are independent variables. These approaches inherently com-
prise a joint estimation [2-5], corresponding to a challenging bilinear optimization problem in which effort is spent explic-
itly estimating system models that are nonetheless discarded post-reconstruction. Recently, Lustig et al. [6] proposed a 
truly “calibration-free” PI (CPI) reconstruction strategy based on exploiting the tendency of the Hankel matrix formed by 
stacking rasterizations of small k-space blocks to be low-rank. While innovative, this approach has limited scalability – 
the memory footprint of the constructed Hankel matrix can be well over an order of magnitude larger than that of the 
target multichannel image set, and performing singular value decompositions (SVD) on such large matrices is computa-
tionally challenging. In this work, we propose a novel and efficient image-domain approach to CPI called CLEAR (cali-
bration-free locally low-rank encouraging reconstruction). After reviewing our strategy, we highlight its computational 
advantages, and demonstrate both its standalone utility and its use in conjunction with sparsity constraints.   
Methods: Without loss of generality, we describe our method for 2D. Suppose we model our acquired signal as 
G=AF+n, where F is a N2xC matrix corresponding to the C-channel signal of interest, A is a N2 K Fourier sampling 
operator (Cartesian or non-Cartesian), and n is a KxC complex Gaussian noise matrix (assumed i.i.d.). Additionally, de-
fine Rb as a B2xN2 operator that extracts BxB blocks (B<<N) from the set of coil images. Note that F can be expressed as 
[F](n,c)=[M](n)·[S](n,c), where S represents the sensitivity profiles and M is the underlying image. Analogously, RbF=diag(RbM)RbS,  In general, RbS is the rank-

determining element. However, since the sensitivity profiles are locally smooth [7], RbS ad-
mits a low-rank decomposition, and RbF will correspondingly be low-rank. CLEAR exploits 
this locally low-rank [8] property, and is based on the following optimization problem:  
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where λ is a regularization parameter, and ||·||* is the nuclear norm, which is the convex enve-
lope of the rank functional [9]. We define Ω as the set of all overlapping blocks subject to 
periodic boundary conditions (translation-invariant). Solutions to (1) can be efficiently gener-
ated, e.g., using projected gradient methods – we employ Toh and Yun’s [10] matrix generali-
zation of FISTA [11]. Each iteration of this method comprises a first-order update of the ob-
jective, and a proximal projection of the penalty which, for (1), is given by:  
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where Sλ(·) is the singular value soft-thresholding operator [12]. Whereas the k-space CPI 
approach is based on singular value decomposition (SVD) of a single, large matrix, (2) is 
based on the SVD of many small matrices. Despite the additional 2C Fourier operations in the 
first-order update, a per-iteration count of floating point operations (FLOPS) [13] reveals that 
image domain CPI is computationally advantageous, especially in the limit of increasing coils 
(FIG 1). The memory footprint needed to compute (2) is only on the order of the target image, 
and so much smaller than that of the k-space approach. We highlight that CLEAR is also very 
amenable to implementation on modern hardware like GPUs, as collision-free parallelization 
of (2) can be obtained by noting that Ω comprises subsets of disjoint blocks. As (1) only ex-
ploits properties of the receiver system, for improved reconstruction performance we can also 
generalize CLEAR to include sparsity penalties. Like low-rankedness, sparsity can be promot-
ed in a block-wise fashion [14], as well as jointly across coils [15], via:  
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where ||·||1,2 is the ℓ1-ℓ2 matrix norm, and Ψ is an orthonormal sparsifying transform. (3) can 
be solved using projections-onto-convex-sets (POCS), variable splitting [16], or by Huang et 
al.’s [17] recent multi-penalty generalization of FISTA. For the latter method, which we use in 
this work, the averaged proximal projection associated with (3) is  
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where Tγ(·) is the joint soft-thresholding operator [15].   
Results: FIG 2 shows example reconstructions for one slice of a 3D SPGR data set (FA=20o, 
TR=15ms, TE=5ms, FOV=24cm, BW=±31.25kHz, N=256) acquired at 1.5T (GE v14.0) with 
an 8-channel head coil, which was retrospectively 3x undersampled according to a variable-
density Poisson disk distribution [15]. Both k-space CPI and CLEAR reconstructions were 
executed with B=8, for 50 iterations. For k-space CPI, 60 (out of 512) singular values were 

retained during hard thresholding. For CLEAR, two parameter settings, corresponding to without (λ=40,γ=0) and with (λ=20,γ=10) the sparsity penalty, were evaluated. 
Ψ was taken as the discrete cosine transform (DCT) [18].  Observe that k-space CPI and CLEAR (only rank penalty) strategies perform similarly in terms of resolution 
and SNR – the computational advantage of the image-domain approach does not appear to degrade image quality. Due to undersampling, both standalone CPI strategies 
suffer an unavoidable SNR penalty; however, noise amplification is mitigated by using a sparsity penalty in conjunction with CLEAR.     
Discussion: We have proposed a novel and efficient image-domain approach to CPI called CLEAR that possesses favorable scalability properties, and readily integrates 
with sparsity methods. Future directions of investigation include advanced hardware implementations and evaluation for non-Cartesian reconstructions.   
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