

Multimodal Validation of Oxidative Stress as a Pathophysiological Model of Chronic Fatigue Syndrome

Dikoma C Shungu¹, Nora Weiduscat¹, James W Murrough², Xiangling Mao¹, Sarah Pillemer², Marvin S Meddow³, Jonathan P Dyke¹, Benjamin H Natelson⁴, Julian M Stewart³, and Sanjay J Mathew⁵

¹Radiology, Weill Cornell Medical College, New York, New York, United States, ²Psychiatry, Mount Sinai School of Medicine, ³New York Medical College, ⁴Beth Israel Medical Center, ⁵Baylor College of Medicine

INTRODUCTION

Chronic fatigue syndrome (CFS) is a complex illness, which is often misdiagnosed as a psychiatric illness. In two previous studies, we used ¹H MRSI to compare neurometabolites in CFS with generalized anxiety disorder (GAD) [1] and major depressive disorder (MDD) [2], common neuropsychiatric disorders with extensive symptom overlap with CFS. In those reports, CFS patients showed significantly elevated ventricular cerebrospinal fluid (CSF) lactate compared to healthy control subjects [1,2] and to patients with GAD [1], while no differences were found between CFS and MDD [2]. Importantly, our replicated finding of significant elevations of ventricular lactate in CFS suggested a potential illness-associated biomarker, whose understanding could shed new light onto the pathophysiology of the illness. In the present third independent cross-sectional study, we aimed to investigate a pathophysiological model of CFS, which postulates that sustained oxidative stress [3] and associated oxidant damage lead to cerebral hypoperfusion and/or to secondary mitochondrial dysfunction that could potentially explain our observed cross-sectional elevations of ventricular lactate. Specifically, this study had two primary objectives: (a) to use ¹H MRSI to replicate in a new cohort our finding of cross-sectional elevations of ventricular lactate in CFS, and (b) to determine whether the postulated [3] and experimentally documented [4,5] oxidative stress increases in the disorder are associated with antioxidant capacity deficit by using ¹H MRS to measure *in vivo* brain levels of glutathione (GSH), the most abundant antioxidant in CNS. In addition, we used arterial spin-labeling (ASL) MRI to replicate prior observations of decreased regional cerebral blood flow (rCBF) in CFS [6,7] that may explain the observed lactate elevations, and ³¹P MRSI to measure regional brain levels of high-energy phosphates (HEPs) as indices of a possible secondary mitochondrial dysfunction in CFS [3], whose presence might also be associated with elevations in lactate.

METHODS

Subjects: Participants included 15 unmedicated patients with CFS diagnosed according to the CDC criteria [8], 15 unmedicated patients with major depressive disorder (MDD), as established by DSM-IV-TR criteria who served as "disease controls", and 13 age- and sex-matched healthy volunteer (HV) subjects.

In vivo Neuroimaging Measurements: A GE 3.0T MR system was used to conduct the following neuroimaging studies in a single 60-90 min session: (a) *In vivo* brain GSH data were acquired from a 3x3x2-cm³ occipital cortex voxel using the standard J-editing sequence (Fig. 1); (b) *In vivo* ventricular CSF lactate levels were obtained by multislice ¹H MRSI [1,2]; (c) *Regional and global cerebral blood flow* was acquired using fast spin echo-based continuous ASL-MRI method; and (d) high-energy phosphates were obtained by ³¹P MRSI using the DRESS sequence. *In vivo* levels of all compounds derived by MRS were corrected for brain matter content using segmented volumetric MRI.

RESULTS AND DISCUSSION

(a) Ventricular CSF Lactate: Mean ventricular CSF lactate, measured by ¹H MRSI and expressed in institutional units (i.u.), differed significantly between the CFS, MDD and HV groups ($F_{2,33} = 16.78$; $p < .001$) (Fig. 2). Post-hoc analyses found that CFS patients had significantly higher ventricular lactate levels than HV ($p < .001$). Elevated ventricular lactate levels were also found in MDD compared to HV ($p = .009$). There was a weak trend toward higher ventricular lactate in CFS compared to MDD ($p = .114$). *This finding represents a third independent replication of our previous observation of increased CSF lactate in CFS, suggesting this to be a feature of the disorder.*

(b) Cortical GSH: Comparisons of occipital GSH levels measured by J-editing and normalized to the peak area of the unsuppressed voxel tissue water (W) revealed a main effect of diagnostic group ($F_{2,40} = 15.93$; $p < .001$), which post-hoc testing attributed to **reductions of GSH/W** (Fig. 2, bottom) in both CFS ($p < .001$) and MDD ($p = .004$) compared to HV. There was a non-significant trend towards lower GSH/W in CFS compared to MDD ($p = .086$). *To our knowledge, this is the first study to document *in vivo* cortical GSH deficits in CFS (a 36% decrease) and in MDD (a 21% decrease), which supports a role for increased oxidative stress in both disorders, and provides a compelling rationale for investigating treatment strategies, such as supplementation with N-acetylcysteine (NAC) or other synthetic precursors, that can restore cortical GSH reserves to potentially lower oxidative stress.*

(c) Regional Cerebral Blood Flow (rCBF): Following intensity and morphological normalization and statistical analysis using the Statistical Parametric Mapping (SPM) software, Version 5, we found significantly different ASL-derived CBF values at the uncorrected significance level of .001 in two brain regions. The CFS group had lower rCBF values in the left anterior cingulate cortex ($p = .039$) and in the right lingual ($p = .016$) regions compared to the HV group. In addition, there was a trend toward lower rCBF in the left anterior cingulate cortex in MDD subjects compared to HV ($p = .08$). There were no significant differences in rCBF values between CFS and MDD in any brain region. *These results are consistent with prior reports of decreased rCBF in CFS [6,7].*

(d) High-Energy Phosphates: We found no differences between the groups in any phosphate metabolites, *suggesting that mitochondrial dysfunction may not be a key factor in our reported lactate elevations in CFS.*

(e) Correlations among Lactate, GSH and Clinical Variables: In exploratory correlational analyses, we found ventricular lactate and cortical GSH to correlate inversely (Fig. 3), not only with each other ($r = -.545$; $p < .001$), but also with several key indices of physical health and disability across all participants, further supporting a role for oxidative stress the pathophysiology of CFS and MDD.

CONCLUSION

Our finding of a significant 36% cortical GSH deficit in CFS has provided both mechanistic and face validity for an emerging oxidative stress model of this poorly understood illness, documenting for the first time a significant decrease in antioxidant capacity in living brain

REFERENCES

- [1] Mathew SJ et al., *NMR Biomed* 2009; **22**:251-8. [2] Murrough JW et al., *NMR Biomed* 2010; **23**:643-50.
- [3] Pall M, *Med Hypotheses* 2000; **54**:115-25. [4] Kennedy G et al., *Free Radic Biol Med* 2005; **39** 584-9; [5] Robinson M et al., *Scand J Med Sci* 2009; **13**:1-9; [6] Ichise M et al., *Nucl Med Commun* 1992; **12**:767-72.
- [7] Yoshiuchi K et al., *Clin Physiol Funct Imaging* 2006; **26**:83-6. [8] Fukuda K et al., *Ann Intern Med* 1994;

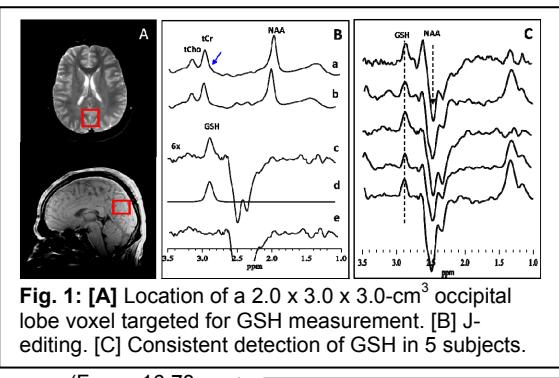


Fig. 1: [A] Location of a 2.0 x 3.0 x 3.0-cm³ occipital lobe voxel targeted for GSH measurement. [B] J- editing. [C] Consistent detection of GSH in 5 subjects.

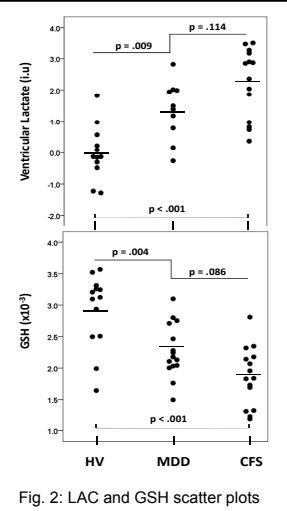


Fig. 2: LAC and GSH scatter plots

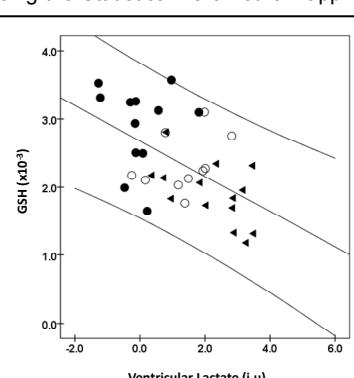


Fig. 3: Correlation of occipital GSH and ventricular lactate levels across all CFS (▲), MDD (○) and HV (●) participants ($r = -.545$, $p < .001$)