B₀-orientation dependence can characterize cortical and sub-cortical fibers in vivo at 7T

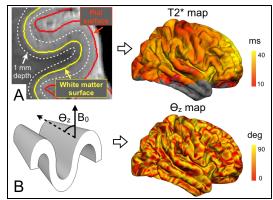
Julien Cohen-Adad¹, Jonathan R Polimeni¹, Bruce R Rosen¹, Caterina Mainero¹, and Lawrence L Wald^{1,2}

¹A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States, ²Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, MA, United States

Introduction. Recent studies have shown a dependency between T_2^* and orientation of white matter fibers with respect to the orientation of the main magnetic field B_0 , relating a macroscopic effect to tissue microstructure [1-3]. Here we hypothesized whether this contrast mechanism can enable the characterization of cortical and sub-cortical fibers *in vivo* at 7T.

Methods. Acquisition. Eight healthy volunteers were scanned at 7T (Siemens Healthcare, Erlangen, Germany) using a head gradient (AC84) and a custom made 32-channel coil [4]. Protocol included a multiecho FLASH T₂*-weighted spoiled gradient-echo (two slabs covering the supratentorial brain, TR=2020ms, TE=6.34+3.2n [n=1..12], resolution = $0.33\times0.33\times1$ mm³, 40 slices, matrix=576×504, BW=335Hz/Pix) and a T₁-weighted MPRAGE (TR/TI/TE=2600/1100/3.26ms, $0.60\times0.60\times1.5~mm^3$). Subjects were also scanned at 3T to obtain a multiecho MPRAGE used for surface reconstruction. Processing. 7T data were corrected for dephasing effects from background field gradient [5]. Then, T₂* was estimated using generalized linear least square fitting of the log of the signal. T₂* volumes were further corrected for distortions related to gradient non-linearities using the vendor-supplied specifications of the AC84 gradient fields. Volumes were then registered to the 3T surface as detailed in [6]. T2* was mapped at the mid-depth of the cortical ribbon and 1 mm below the white/gray matter boundary (Fig1A) then smoothed tangential to the surface (FWHM=5mm) using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/). Orientation dependence was probed by relating T₂* to the angle θ between B₀ and the normal to the cortical surface (*Fig1B*). Instead of rotating the head of participants [1], we took advantage of the convoluted nature of the human cortical folding pattern to obtain a wide range of angles. Cortical fibers. T2* sampled in the cortex was averaged within regions defined by the PALS-12 Brodmann atlas [7], then plotted against $\theta_z \in [0,\pi/2)$ and a nonlinear regression was conducted to test the presence of a B₀-dependency. Fitting equation was $R_2*=c_0+c_1.\sin(2.\theta z+\varphi_0)$, where c_0 is the background portion of R_2* not affected by B_0 orientation, c_1 is the portion of R_2^* that does depend on B_0 orientation, and φ_0 is a phase offset term [2]. The B_0 dependency was assessed by ΔR_2 *=2. $|c_1|$. <u>Sub-cortical fibers</u>. We tested whether the orientation of the sub-cortical fibers (i.e., radial or tangential to the cortical surface) is sensitive to B₀-dependency. A mask of gyri and sulci was created from curvature information. T2* sampled at 1 mm below the cortex was averaged in sulci and gyri, then plotted against θ_z . A linear regression assessed the sign of the B₀-dependency, i.e., positive correlation between T_2^* and θ_z would suggest that fibers are parallel to the cortical surface, radial otherwise [1, 2].

Results. Patterns of lower T_2^* were detected in the sensorimotor (BA4,1), visual (BA19) and auditory cortices (BA42), likely reflecting higher myelin content (Fig2A). B_0 orientation dependence was $4\times$ higher in the primary motor cortex (BA4) compared to the somatosensory cortex (BA2), as illustrated by the parameter c_1 in Fig2B. Mapping of B_0 -dependence in 30 Brodmann areas is provided in Fig2C and further supports the stronger B_0 -dependency in the motor cortex relative to other areas, likely due to the presence of highly coherent myelinated fibers. Analysis of B_0 -dependency 1 mm below the cortex revealed negative correlations in gyri (β =-0.49, T=-19.9, T=-19.9,


Discussion. This study suggests that B₀-orientation dependence can probe the coherency and orientation of cortical fibers, shedding light into the potential use of this type of contrast to characterize cyto-/myeloarchitecture *in vivo*. The B₀-orientation dependence of sub-cortical fibers revealed consistent anatomical features, reflecting U-fibers running tangentially to the sulci and penetrating radially in both contiguous gyri. As shown in the white matter [8], this technique could be used to supplement information given by diffusion tensor imaging to study the orientation of cortical and sub-cortical fibers [9].

References.

- 1. Bender, B. and U. Klose, NMR Biomed, 2010. 23(9): p. 1071-6.
- 2. Lee, J., et al., Neuroimage, 2011. 57(1): p. 225-34.
- Denk, C., et al., NMR in biomedicine, 2011. 24(3): p. 246-52.
 Keil, B., et al., Proc. ISMRM, Stockholm, Sweden, 2010: p. 1493.
- Keri, B., et al., 1760: Isimital, Biochiolin, Sweath, 2010: p. 1455.
 Fernández-Seara, M.A. and F.W. Wehrli, Magn Reson Med, 2000. 44(3): p. 358-66.
- 6. Cohen-Adad, J., et al., *Neuroimage*, 2011. **57**(1): p. 55-62.
- 7. Van Essen, D.C., Neuroimage, 2005. 28(3): p. 635-662.
- 8. Liu, C., Magn Reson Med, 2010. **63**(6): p. 1471-7.
- 9. McNab, J.A., J.R. Polimeni, and L.L. Wald, Proc. ISMRM, Montreal, Canada, 2011: p. 412.

Acknowledgements. We thank Doug Greve, Bruce Fischl, Jennifer McNab, Audrey Fan and Boris Keil. Study supported by the NMSS (FG1892A1/1, 4281-RG-A-1) and NIH (5P41 RR14075 08).

 \rightarrow Fig3. A mask of gyri and sulci was created from the signed mean curvature calculated from the surface geometry. T_2^* sampled at 1 mm depth correlated negatively with θ_z in the gyri and positively in the sulci, consistent with the known anatomy of U-fibers. Source of the histology picture: Ellison & Love: Neuropathology 2e, 2004 Elsevier Ltd.

Fig1. A: Method for T_2^* mapping along the midline of the cortex (between pial and white matter surfaces) and at 1 mm depth. **B**: Method to probe B_0 -dependency by computing the angle between the normal of the cortical surface and B_0 .

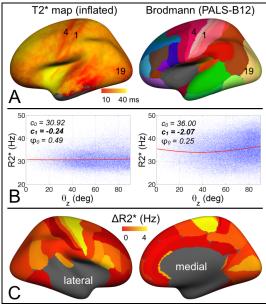
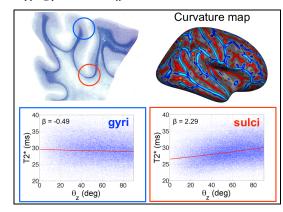



Fig2. A: $T2^*$ map averaged across subjects (N=8) and compared to the Brodmann atlas. B: Fitting results in the somatosensory (BA2) and motor cortex (BA4), the latter exhibiting 4^\times stronger B0-dependency. C: B_0 -dependency mapping probed in 30 different Brodmann areas.

