

MOLLI T_1 Values Have Systematic T_2 and Inversion Efficiency Dependent Errors

Kelvin Chow¹, Jacqueline A Flewitt², Joseph J Pagano¹, Jordin D Green³, Matthias G Friedrich², and Richard B Thompson¹

¹Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada, ²Stephenson CMR Centre, University of Calgary, Calgary, Alberta, Canada, ³Siemens Healthcare, Calgary, Alberta, Canada

INTRODUCTION Diffuse myocardial fibrosis occurs in various cardiomyopathies and has been assessed with myocardial and blood pool T_1 values before and after intravenous gadolinium¹. The MOLLI sequence² has been widely used for quantitative T_1 mapping and is known to underestimate myocardial T_1 values at higher heart rates⁴, however its dependence on T_2 values and inversion pulse efficiency has not been explored. We investigate its accuracy in phantoms, in-vivo, and with Bloch equation simulations, and compare to a new saturation-recovery T_1 mapping technique.

METHODS **Phantoms:** 14 NiCl₂ doped agarose phantoms with a broad range of T_1 and T_2 values to simulate blood or myocardium at various levels of edema and gadolinium concentrations were imaged on a 1.5 T Siemens Avanto MRI. Gold standard spin-echo (SE) experiments with TR>5s and 90° flip were used, with inversion-recovery (IR) at 16 TIs (100–5000ms) to measure T_1 , and 7 TEs (11–200ms) to measure T_2 .

A common MOLLI implementation consisting of 2 inversion sets of 3 and 5 images, 75% partial Fourier, $TI_{min}=110$ ms with 80ms increment, 35° flip, and TE/TR=1.03/2.4ms was used with a simulated HR of 60bpm. T_1 was calculated with a standard 3 parameter exponential fit and Look-Locker correction³. Inversion pulse efficiency was assessed using centric gradient echo k-space readout with a single image inversion set, repeated 16 times with TIs spanning 50–3000ms and fitting data to $\{\text{Signal} = A[1-2\eta \cdot \exp(-TI/T_1)]\}$, where A is a scaling factor and η is inversion efficiency.

A new SATuration-recovery single-SHot Acquisition (SASHA) T_1 mapping technique was also used: single-shot SSFP images from 20 consecutive heartbeats with incremented TI spanning the RR interval in the last 19 images (no saturation in the first image), 70° flip, TE/TR 1.3/2.6ms, full k-space, and simulated HR of 60bpm. Saturation efficiency was assessed using centric gradient echo readout with 19 TIs (24–790ms) and a "no-saturation" image. Data was fit to $\{\text{Signal} = A[1-\eta \cdot \exp(-TI/T_1)]\}$, to calculate both T_1 and saturation efficiency (η).

In-Vivo: Myocardial and blood T_1 values were measured in 10 healthy volunteers at a mid-ventricular short-axis slice prior to and 20 minutes following 0.1mmol/kg Magnevist using both MOLLI and SASHA with parameters as described above, but with 10 images for SASHA. In two additional volunteers, T_1 mapping was performed in skeletal muscle (left and right latissimus dorsi) in an axial slice using inversion-recovery HASTE (IR-HASTE), MOLLI, and SASHA. IR-HASTE was performed with 6 TIs (100–4200ms) with an effective TE=13ms. Preparation pulse efficiency (η) was also assessed as above.

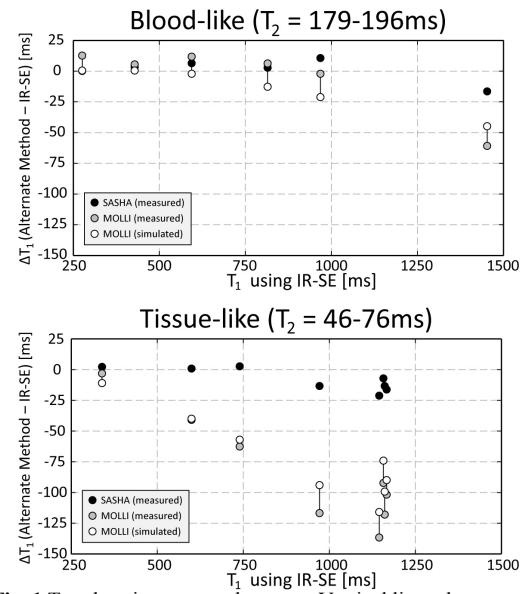
Simulations: Bloch equation simulations of MOLLI and SASHA were performed in MATLAB using actual acquisition and timing parameters, with SE-derived T_1/T_2 values (in phantoms) and measured preparation (saturation or inversion) pulse efficiency (η).

RESULTS **Phantoms:** With a longer T_2 (blood-like), both MOLLI and SASHA T_1 values show good agreement with gold-standard IR-SE values, while phantoms with shorter T_2 (tissue-like) have substantial T_1 underestimation using MOLLI not seen with SASHA (Fig. 1). In phantoms, η was found to be 97.5±1.2% for MOLLI's inversion pulse and 101.5±0.9% for SASHA's saturation pulse. Simulations using SE-derived T_1 , T_2 , and η show good agreement with observed T_1 values for both MOLLI (1.7±1.0% absolute difference, vertical lines Fig. 1) and SASHA (0.8±0.4% difference, not shown).

Skeletal Muscle: SASHA mildly overestimated T_1 compared to IR-HASTE (1074±20ms vs. 1029±33ms), while MOLLI values were substantially lower (788±21ms). η was 100.5±0.5% for SASHA but only 91.1±1.3% for MOLLI. Using a literature T_2 value of 33ms⁵ for skeletal muscle, the measured η 's, and average IR-HASTE values, simulations predicted SASHA and MOLLI values of 1027 ms and 855 ms respectively.

Myocardium: Baseline MOLLI myocardial T_1 values (935.5±24.9 ms) in healthy subjects (5 male, 28.8±6.6yrs, 63.4±8.4 bpm) were similar to previously reported MOLLI values^{3,4}, but substantially lower than SASHA (1175.2±27.6 ms, Table 1). Differences are smaller for blood T_1 values (Table 1). Simulations using average SASHA T_1 as truth, 91% inversion efficiency (as measured in skeletal muscle), and literature⁶ T_2 values of 50 ms for myocardium and 240 ms for blood predict baseline and post-Gd MOLLI T_1 values within 6% of actual measurements (Table 1).

CONCLUSIONS Myocardial MOLLI T_1 values are routinely 100–200ms lower than saturation-recovery based SASHA values, which can be explained by MOLLI's sensitivity to T_2 and inversion efficiency. MOLLI simulations predict T_1 values in good agreement with actual measurements when incorporating T_2 effects and measured inversion efficiency. Systematic T_2 effects reduce myocardial T_1 s by ~100 ms, while a 91% inversion efficiency (η) measured in nearby skeletal muscle would explain the further 100ms underestimation, suggesting a similar non-ideal inversion efficiency in myocardium. Errors are smaller in the longer T_2 blood and also in phantom studies where higher inversion efficiency is achieved. T_2 dependent errors in MOLLI are inherent to all its variants due to the accumulated T_2 effect on magnetization between images within each inversion set and must be considered when deriving parameters such as extracellular volume fraction, which combine blood and myocardial T_1 values. Inversion efficiency must also be measured to ensure accurate T_1 values in MOLLI implementations. The saturation-recovery SASHA technique shows no T_2 dependence and good agreement with gold standard values in phantoms and skeletal muscle, with similar or shorter acquisition times.


REFERENCES ¹Flacke *et al.* Radiol 2001;218:703-10

³Piechnik SK *et al.* J Cardiovasc Magn Reson 2010;12:69

²Messroghli DR *et al.* MRM 2004;52:141-6

⁴Toussaint JF *et al.* MRM 1996;35:62-9

⁵Foltz WD *et al.* MRM 2003;49:1089-1097

Fig. 1 T_1 values in agarose phantoms. Vertical lines show difference between simulated and experimental MOLLI values.

T_1 [ms]	Myocardium		Blood	
	Baseline	20min Post Gd	Baseline	20 min Post Gd
SASHA (Measured)	1175.2±27.6	752.9±48.2	1687.4±85.8	542.6±56.3
MOLLI				
Measured	935.5±24.9	614.4±33.8	1514.1±107.5	524.9±55.2
Simulation ($\eta = 91\%$)	989.6	654.0	1464.5	500.8
Simulation ($\eta = 100\%$)	1085.9	717.3	1605.3	549.8

Table 1. T_1 values in 10 healthy volunteers.