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Introduction: Characterization of myocardial fiber architecture using Diffusion Tensor Imaging (DTI) has traditionally been performed 
ex vivo. In vivo DTI of the human heart has been described but has been limited either to single slice acquisitions at single phases of 
the cardiac cycle [1,2], or to techniques requiring large amounts of image transformation and interpolation [3]. The 3D organization of 
myofiber tracts in the human heart in vivo thus remains poorly defined. Moreover, the impact of myocardial contraction on the 3D fiber 
architecture in the human heart in vivo remains unknown. Here, we employ a recently developed diffusion weighted (DW) stimulated 
echo (STEAM) single shot (SS) EPI sequence [4], combined with a 3D tractographic approach [5], to address these issues. In vivo DTI 
tractography of the heart was performed in normal volunteers in a single session without the need for data regridding, interpolation or 
transformation. In addition, data were acquired at end-diastole and end-systole to quantify changes in myofiber organization as a 
function of myocardial contraction and relaxation. 

Material and Methods: DTI of eight normal volunteers (n=8) was performed on a 
3T clinical scanner (Skyra, Siemens) using a diffusion-weighted STEAM sequence 
with the following parameters: 6 diffusion-encoding directions, b=350s/mm2, fat 
saturation, TR/TE=1100/23ms, spatial resolution=2.7x2.7x8mm3, 3 slices, 6-10 
averages, multiple breathholds, scan duration 14.4±1.5min. The diffusion tensor 
field was determined and diagonalized to yield the principal (e1/λ1), secondary 
(e2/λ2) and tertiary (e3/λ3) eigenvectors/values. Fiber tracts were constructed by 
integrating the principal eigenvector field into streamlines using a 4th order Runge-
Kutta approach. Mean diffusivity (MD), fractional anisotropy (FA) and helix angle 
(HA) values in 12 sectors in the anterior, lateral, inferior and septal walls of the left 
ventricle (LV) were derived. Myofiber tracts were color-coded by their median HA. 
The MD, FA and HA values from all sectors were averaged for analysis. 

Results: Robust tractograms, showing the characteristic crossing helical 
architecture of the myocardium, could be obtained at both end-diastole and systole 
(Figure 1). Tractography showed that myofibers in the subepicardium of the LV 
assumed a more oblique orientation at end-systole versus end-diastole (Figure 1). 
Both MD and FA were significantly (p<0.05) higher at end-diastole than end-systole 
(Figure 2A, 2B). Further analysis revealed that all three eigenvalues were higher at 
end-diastole than end-systole (p<0.05), although the change in the principal 
eigenvalues (λ1) was greatest. The helix angle of fibers in the subendocardium 
changed little across the cardiac cycle (Figure 2C). However, HA in the 
subepicardium increased in its obliquity by approximately 10 degrees at end-
systole versus end-diastole.  

Conclusion: Here we perform DTI tractography 
of the human heart in vivo for the first time without 
the need for interpolation or image transformation. 
We show that robust tractograms can be 
constructed with this approach with a total scan 
time of less than 20 minutes. We show that fiber 
architecture in the myocardium is highly dynamic 
and is a function of both chamber geometry and 
LV contraction. The decrease in MD and FA observed during end-systole is likely due to myocyte thickening, which compresses the 
extracellular space during systole. Contraction of the LV reduces its outer circumference, thus allowing the subepicardial myofibers to 
assume a more oblique orientation during systole. Future experiments will be needed to determine the impact of myocardial strain on 
the diffusion tensor. Nevertheless, our results show for the first time that in vivo diffusion tensor MRI tractography of the human heart is 
feasible and can be performed under conditions suitable for clinical translation. Our data also show that MD, FA and fiber HA change as 
the myocardium contracts and relaxes, underscoring the important relationship between myocardial microstructure and function. 
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