

Non-invasive *in vivo* imaging of inflammation in experimental viral myocarditis by ¹⁹F cellular MRI

Yu-Xiang Ye¹, Martina Sauter², Thomas C Basse-Lüsebrink¹, Thomas Kampf¹, Xavier Helluy^{1,3}, Karl-Heinz Hille³, Ali Yilmaz⁴, Udo Sechtem⁴, Wolfgang R Bauer⁵,

Reinhard Kandolf², Karin Klingel², and Peter M Jakob^{1,3}

¹Dept. Experimental Physics V, University of Würzburg, Würzburg, Bavaria, Germany, ²Dept. Molecular Pathology, University Hospital Tübingen, Tübingen, Germany,

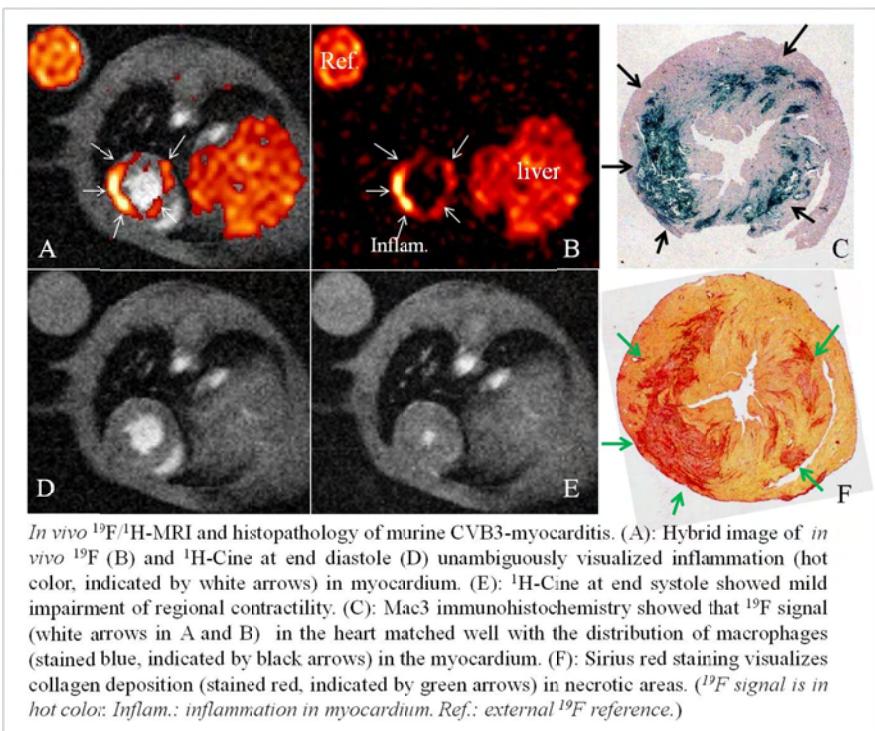
³Research Center for Magnetic Resonance Bavaria, Würzburg, Bavaria, Germany, ⁴Division of Cardiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany, ⁵Dept.

Internal medicine I, University hospitals Würzburg, Würzburg, Bavaria, Germany

Introduction

Myocarditis, most often caused by common viral infections such as enteroviruses, is a challenging disease for diagnosis and treatment. Its clinical presentations are non-specific. The gold standard to diagnose myocarditis is histopathology and immunohistochemistry to define cardiac injury and inflammatory cells in the myocardium within endomyocardial biopsies. However, this invasive procedure is often insensitive to detect myocarditis¹. A non-invasive, specific and sensitive method is needed for early detection of myocarditis. Thus, a non-invasive imaging technique based on fluorine-19 (¹⁹F) cellular MRI was applied in this study, to detect inflammation of viral myocarditis in a mouse model *in vivo*.

Methods


Viral myocarditis was induced by infecting A.BY/SnJ mice (n=5) with coxsackievirus B3 (CVB3). PFC emulsion (150µl, concentration 20% v/v) was injected *i.v.* 13 days post-infection. As control two non-infected mice received the same dose of PFC. The labeling efficiency by PFC was examined by flow cytometry in blood samples after injecting fluorescence labeled PFC emulsion.

All MR measurements were performed at a 7T small animal scanner. *In vivo* ¹H/¹⁹F-MRI was acquired by a ¹H/¹⁹F birdcage coil. ¹⁹F MRI was superimposed on ¹H-Cine images allowing localization of inflammation in myocardium. *In vivo* ¹⁹F images were acquired by TSE sequence with spatial resolution (SR) 0.5×0.5×0.5mm. ¹H-Cine was acquired by FLASH sequence.

H&E, Sirus red staining and immunohistochemistry applying Mac3 and CD3 antibodies were applied to examine myocardial injury, collagen deposition, macrophage recruitment and T cell infiltration in myocardial tissue, respectively.

Results

PFC emulsion preferably labeled CD11b+ cells (mainly monocytes and neutrophils) in blood after intravenous injection (data not shown). ¹⁹F-MRI detected patchy ¹⁹F signals in myocardium exclusively in infected mice (Figure A&B) but not in controls. The ¹⁹F signal was primarily found in the left ventricular wall, especially in basal segments. The contractile function of infected myocardial segments appeared only mildly impaired. The global contractile function was largely preserved (Figure D&E). Mac3 immunohistochemistry (Figure C) and H&E staining revealed that the distribution of ¹⁹F signal is spatially correlated with presence of macrophages and myocardial necrosis and fibrosis as shown by sirus red staining (Figure F).

In vivo ¹⁹F/¹H-MRI and histopathology of murine CVB3-myocarditis. (A): Hybrid image of *in vivo* ¹⁹F (B) and ¹H-Cine at end diastole (D) unambiguously visualized inflammation (hot color, indicated by white arrows) in myocardium. (E): ¹H-Cine at end systole showed mild impairment of regional contractility. (C): Mac3 immunohistochemistry showed that ¹⁹F signal (white arrows in A and B) in the heart matched well with the distribution of macrophages (stained blue, indicated by black arrows) in the myocardium. (F): Sirus red staining visualizes collagen deposition (stained red, indicated by green arrows) in necrotic areas. (¹⁹F signal is in hot color: Inflam.: inflammation in myocardium. Ref.: external ¹⁹F reference.)

Discussion and conclusion

¹⁹F-MRI was able to unambiguously detect inflammation in the myocardium of CVB3-infected mice. The ¹⁹F signal was due to macrophages labeled by PFC within cardiac lesions. If clinically approved PFC emulsion is available for MRI cell tracking, this method has potential to be translated to clinics to assist early, non-invasive diagnosis of viral myocarditis. In addition to T cells, macrophages are reported to contribute significantly to the development of extensive postviral fibrosis, which finally may lead to dilated cardiomyopathy². Thus, this noninvasive ¹⁹F-MRI cell tracking technique might be valuable to improve the management of patients suffering from acute and chronic viral myocarditis by localization and quantification of macrophage infiltrates, also in follow up studies.

Reference: 1. Baughman, K. L. (2006). Circulation. 2. Szalay, G. et al. (2009) Circulation Research

Acknowledgement: This work was supported partly by BMBF 01EZ0816.