
  
Fig.1. (A) Simulated area is compared against three different 
reconstruction approaches at five different SNRs. (B) Average 
symmetric Kullbeck-Leibler (SKL) score as a function of SNRs for 
three different approaches. Separate averages have been calculated 
for lesions and surrounding matrix. (C) Relative mean square of 
reconstructed MWF maps as a function of SNRs.

 
Fig.2. Comparison of  MWF maps obtained with the conventional (A) and 
proposed (B) algorithms. T2-Flair anatomical images are shown in (C) for 
reference. Note the improved detection of myelin water compartment and 
reduced spatial variability of the proposed algorithm. 

Brain structures Convention-al 
algorithm 

Proposed 
algorithm 

P- 
value 

Genu of CC 0.38 ± 0.08 0.20 ± 0.05 0.02 
Splenium of CC 0.34 ± 0.11 0.18 ± 0.03 0.02 
Internal capsule 0.31 ± 0.06 0.18 ± 0.04 <.001 
Table 1: Comparison of COV of MWF maps within various WM structures 
averaged over all volunteers. 
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Introduction: T2 relaxometry has proven its potential to decode the underlying tissue structure changes due to various diseases such as multiple 
sclerosis [1]. However, because of the extent of the ill-posedness of the problem, the returned T2 distributions and subsequently the myelin water 
fraction (MWF) maps are very sensitive to noise and high SNR of 500-1000 is needed for robust data fitting [2]. Conventional L2-norm regularization 
imposing the temporal smoothness of the T2 distribution can improve the stability of the solution [3].  However, that may not be adequate particularly at 
low SNR. Here, we propose a new spatial regularization method to improve on the noise robustness of the reconstruction algorithm and compare its 
performance to conventional regularization.  
Theory: Assuming the underlying T2 distribution consists of discrete T2 points logarithmically chosen over a range of relevant T2 values, the signal at 
any echo time TEk for  a single voxel is given by:

 

y = Ax + ε, with Aki =  exp(-TEk/T2(i )) and y is echo data in column form and x is a column vector 
consisting of all volume fractions αi with respective T2 values of T2(i), and ε denotes the noise vector (white Gaussian). For spatial regularization, a 
corresponding forward equation for multiple voxels can be formed: 0;ex ≥+= xxAy ε where the single-voxel quantities x, y, ε are collected into multi-
voxel column vectors ε,,yx  and the diagonal blocks of the block diagonal matrix Aex is the matrix A. In a typical multi-echo spin echo (MESE) analysis, 
contributions of 50-80 T2 points are calculated using 32-48 image echoes. 
To improve the noise robustness of reconstruction, the prior expectations regarding the spatial smoothness of tissue organizations is being introduced 
using a Bayesian spatial approach which minimizes (1)   0;μμminargˆ 2
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where µT and µS are regularization 

parameters. The first term is the data fidelity term, while the second term is the conventional temporal regularization term which penalizes large values in 
inferred T2 distributions. The third term imposes spatial constraints. Matrix  SD  is a first difference operator whose norm  |||| SxD  penalizes non-smooth 
solutions. Matrix W  is a diagonal matrix, whose elements are given by a half-sigmoid function over T2 points with inversion point around T2 = 50 ms, 
which ensures that the lower T2 range does not get over-regularized in comparison to the higher T2 range. 
Data and Methods: First, a numerical phantom consisting of lesions with varying sizes (single 
pool with T2 of 100 ms) surrounded by matrix (two pools with geometric means T2 of 20 ms 
and 100 ms) was used to evaluate the developed algorithm. Next, 3D MESE T2 relaxometry 
data from seven healthy volunteers were acquired at 1.5T (GE HDxt 15.0, GE Healthcare) and 
consisted of 32 image echoes with TE varying from 5 ms to 300 ms [4].  
To achieve the minimization as formulated in (1),  50-80 T2 points are logarithmically chosen 
over a range of 5-600 ms. By setting µS = 0 and Aex ≡ A in Eq (1) , the conventionally 
regularized formulation for single voxel can be recovered  which is then minimized for 100 
logarithmically spaced μT ]10,.....,10[ 15 −−∈ . The regularization constant μT is chosen by L-curve 
method [5] as it is better grounded in Bayesian approaches. The suitable μT is allowed to vary 
voxelwise. The spatial regularization parameter μS is chosen to be spatially invariant constant 
for a particular data: [ ]1000,....,500,200,100,10,1α α;μμ opt

T
opt
S ∈= ; and opt

Tμ is the median of all 
voxel-wise μT. A sparse version of the nonnegative least square method [5] has been used 
which exploits the sparseness of system matrix corresponding to Eq (1). A supervised trial and 
error strategy was used whereby the MWF of a periventricular region from a central slice was 
reconstructed repeatedly. The spatial uniformity of the MWF map as well as the residual of the 
multi-exponential fit were used to select the optimum value of α.  For calculation of MWF, 
contributions of T2 points between 5 ms- 50 ms are assumed to be due to myelin. 
Results:  
Simulation: Fig.1 shows the simulated and reconstructed MWF maps at various SNR. The 
proposed method is visually superior to the conventional approach with reduced coefficient of 
variance (COV). The simulated distributions were also compared with the extracted 
distributions using averaged symmetric Kullbeck-Leibler (SKL) score (lower score implies 
better agreement between distributions). The proposed method was found to perform better 
based on both averaged SKL score (Fig 1B) and mean square error (Fig 1C). 
Human experiment: Average SNR measured from the splenium of corpus callosum was 316 
± 31 (n=7). MWF maps from a central slice of one subject are shown in Fig 2. The spatial 

variations of MWF map within 
major WM structures, as 
measured by COV, are 
significantly reduced for 
proposed algorithm (table 1) 
and are also visually more 
consistent with corresponding 

anatomical T2 FLAIR images. Further, WM and GM masks were obtained using SPM5 software [6] and numbers of voxels with multiple detected pools 
were counted. The proposed algorithm was able to resolve two water pools in 20-30% more WM voxels, demonstrating improved detection of the myelin 
water compartment within myelin-rich WM tissues. A similar improvement was observed in GM tissues. Over 7 subjects, the average MWF were 16.7 ± 
1.8% (genu of CC), 14.6 ± 3.1% (splenium of CC), and 14.2 ± 1.5% (internal capsule) which were comparable with previously reported values. 
Conclusions: Our preliminary results demonstrate that the use of weak spatial constraints improves the robustness of multi-exponential T2 data fitting. 
The developed algorithm may allow better MWF reproducibility for longitudinal or multi-site patient studies and warrants further evaluation.  
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