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Introduction: T2 relaxometry has proven its potential to decode the underlying tissue structure changes due to various diseases such as multiple
sclerosis [1]. However, because of the extent of the ill-posedness of the problem, the returned T2 distributions and subsequently the myelin water
fraction (MWF) maps are very sensitive to noise and high SNR of 500-1000 is needed for robust data fitting [2]. Conventional L2-norm regularization
imposing the temporal smoothness of the T2 distribution can improve the stability of the solution [3]. However, that may not be adequate particularly at
low SNR. Here, we propose a new spatial regularization method to improve on the noise robustness of the reconstruction algorithm and compare its
performance to conventional regularization.

Theory: Assuming the underlying T2 distribution consists of discrete T2 points logarithmically chosen over a range of relevant T2 values, the signal at
any echo time TE, for a single voxel is given by: y = Ax + €, with A = exp(-TE«/T,(i )) and y is echo data in column form and x is a column vector
consisting of all volume fractions o; with respective T2 values of T2(i), and € denotes the noise vector (white Gaussian). For spatial regularization, a

corresponding forward equation for multiple voxels can be formed: y = A, X+ £;X 2 0 where the single-voxel quantities x, y, € are collected into multi-
voxel column vectors x,y,£ and the diagonal blocks of the block diagonal matrix A, is the matrix A. In a typical multi-echo spin echo (MESE) analysis,

contributions of 50-80 T2 points are calculated using 32-48 image echoes.
To improve the noise robustness of reconstruction, the prior expectations regarding the spatial smoothness of tissue organizations is being introduced

using a Bayesian spatial approach which minimizesfx:argmﬁin"Acxi—?"2 +MT||i||2 +us||WDSi||2;x20 (1) where pr and us are regularization

parameters. The first term is the data fidelity term, while the second term is the conventional temporal regularization term which penalizes large values in
inferred T2 distributions. The third term imposes spatial constraints. Matrix Dy is a first difference operator whose norm || D¢x| penalizes non-smooth

solutions. Matrix W is a diagonal matrix, whose elements are given by a half-sigmoid function over T2 points with inversion point around T2 = 50 ms,
which ensures that the lower T, range does not get over-regularized in comparison to the higher T2 range.

Data and Methods: First, a numerical phantom consisting of lesions with varying sizes (single MWE Map: Simulated
pool with T2 of 100 ms) surrounded by matrix (two pools with geometric means T2 of 20 ms
and 100 ms) was used to evaluate the developed algorithm. Next, 3D MESE T2 relaxometry
data from seven healthy volunteers were acquired at 1.5T (GE HDxt 15.0, GE Healthcare) and GNR Comvemtioml  Proposed
consisted of 32 image echoes with TE varying from 5 ms to 300 ms [4]. e
To achieve the minimization as formulated in (1), 50-80 T2 points are logarithmically chosen
over a range of 5-600 ms. By setting ys = 0 and A = A in Eq (1) , the conventionally
regularized formulation for single voxel can be recovered which is then minimized for 100

logarithmically spaced pr € [107°,.....,107']. The regularization constant pr is chosen by L-curve 1

method [5] as it is better grounded in Bayesian approaches. The suitable pr is allowed to vary
voxelwise. The spatial regularization parameter s is chosen to be spatially invariant constant

for a particular data: pg =pa;oe [1,10,100,200,500.....,1000] ; and pis the median of all

voxel-wise Lr. A sparse version of the nonnegative least square method [5] has been used
which exploits the sparseness of system matrix corresponding to Eq (1). A supervised trial and
error strategy was used whereby the MWF of a periventricular region from a central slice was :

reconstructed repeatedly. The spatial uniformity of the MWF map as well as the residual of the Fig1. (A) Simulated area is compared ag;’“ﬁst three different
multi-exponential fit were used to select the optimum value of a. For calculation of MWF, reconstruction approaches at five different SNRs. (B) Average

contributions of T2 points between 5 ms- 50 ms are assumed to be due to myelin. symmetric Kullbeck-Leibler (SKL) score as a function of SNRs for
Results: three different approaches. Separate averages have been calculated

. . . . . for lesions and surrounding matrix. (C) Relative mean square of
Simulation: Fig.1 shows the simulated and reconstructed MWF maps at various SNR. The reconstructed MWF maps as a function of SNRs.

proposed method is visually superior to the conventional approach with reduced coefficient of
variance (COV). The simulated distributions were also compared with the extracted
distributions using averaged symmetric Kullbeck-Leibler (SKL) score (lower score implies
better agreement between distributions). The proposed method was found to perform better
based on both averaged SKL score (Fig 1B) and mean square error (Fig 1C).

Human experiment: Average SNR measured from the splenium of corpus callosum was 316

+ 31 (n=7). MWF maps from a central slice of one subject are shown in Fig 2. The spatial
variations of MWF map within
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Brain structures Convention-al Proposed P- X -

algorithm algorithm value major WM  structures, as ¢
Genu of CC 0.38 £0.08 0.20 £ 0.05 0.02 measured by COV, are A - K :
Splenium of CC 0.34+0.11 0.18 £ 0.03 0.02 CPRY. z o2l
Internal capsule 0.31 +0.06 0.18 +0.04 <.001 S|gn|f|cantly _reduced for Fig.2. Comparison of MWF maps obtained with the conventional (A) and
Table 1: cfmparison of COV of MWE maps within various WM structures proposed algorithm (table 1) proposed (B) algorithms. T2-Flair anatomical images are shown in (C) for
averagéd over all volunteers. and are also visually more reference. Note the improved detection of myelin water compartment and

. . . reduced spatial variability of the proposed algorithm.
consistent with corresponding P Y prop 9

anatomical T2 FLAIR images. Further, WM and GM masks were obtained using SPM5 software [6] and numbers of voxels with multiple detected pools
were counted. The proposed algorithm was able to resolve two water pools in 20-30% more WM voxels, demonstrating improved detection of the myelin
water compartment within myelin-rich WM tissues. A similar improvement was observed in GM tissues. Over 7 subjects, the average MWF were 16.7 +
1.8% (genu of CC), 14.6 £ 3.1% (splenium of CC), and 14.2 + 1.5% (internal capsule) which were comparable with previously reported values.
Conclusions: Our preliminary results demonstrate that the use of weak spatial constraints improves the robustness of multi-exponential T2 data fitting.
The developed algorithm may allow better MWF reproducibility for longitudinal or multi-site patient studies and warrants further evaluation.
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