

Combined Diffusion-weighted-, Blood oxygen level dependent- and Dynamic contrast enhanced-MRI for assessment of renal cell carcinoma.

Mike Notohamiprodjo¹, Michael Staehler², Nicole Steiner¹, Felix Schwab³, Steven P Sourbron⁴, Henrik J Michaely⁵, Maximilian F Reiser¹, and Konstantin Nikolaou¹

¹Department of Clinical Radiology, University Hospitals Munich, Munich, Bavaria, Germany, ²Clinic for Urology, University Hospitals Munich, ³Department of Clinical Radiology, Josef Lissner Institute for Biomedical Imaging, University Hospitals Munich, Munich, Bavaria, Germany, ⁴Medical Physics, University of Leeds, ⁵Department of Clinical Radiology and Nuclear Medicine, University Hospital Mannheim

Purpose: Dynamic Contrast-Enhanced (DCE)-MRI, Diffusion weighted Imaging (DWI) and Blood oxygen level dependent (BOLD) MRI for evaluation of primary Renal Cell Carcinoma (RCC) (1,2,3), however no study has assessed the correlation of the derived parameters and the potential complimentary information provided by these techniques. In tumors other than RCC, Blood oxygen level dependent (BOLD) MRI has shown moderate correlation with DCE-MRI (4). The purpose of this study was to investigate the feasibility and correlation of DWI, BOLD and DCE-MRI for assessment of cellularity, oxygenation, perfusion and permeability of primary RCC. We evaluated if the different techniques yield competing or complimentary data.

Material and Methods: Fourteen patients with clear cell and 4 patients with papillary RCC were examined with DWI, BOLD MRI and DCE-MRI at 1.5T. Diffusion weighted images were acquired in breath-hold technique with a coronal echo-planar-imaging sequence (TR 3000ms; TE 98ms; slice thickness 8mm; matrix 128 x 128; number of slices 4; FOV 400mm, b-values 0; 500 s/mm²). BOLD MR images were obtained in breath-hold technique using a coronal multi-echo Gradient-Echo-Sequence (TR 280ms; 12 echoes from TE=5 to TE=49ms; increment 4ms; slice thickness 8mm; number of slices 5; matrix 192x192; FOV 430 mm). DCE-MRI was performed during free breathing with a Saturation-Recovery Turbo-FLASH sequence (TR 277 ms; TE 0.95 ms; slice thickness 8 mm, matrix 192 x 134; field of view 440 mm x 366 mm). Four slices were acquired within 1 s for a measurement time of 4 minutes. DCE-MRI was analyzed using retrospective respiratory triggering and a 2-compartment-model allowing for separation of perfusion (plasma flow: F_p , ml/100ml/min and plasma volume: V_p , ml/100ml), permeability (extraction flow: F_E , ml/100ml/min) and the extracellular volume (V_E , ml/100ml). Statistical analysis was performed with the Wilcoxon signed-rank test and Pearson's correlation coefficient.

Results: The ADC of clear cell RCC was slightly but not significantly higher than of papillary RCC (Table 1). The mean $R2^*$ of clear cell RCC was higher than of papillary subtypes ($p = 0.1$) (Figure 1 and Figure 2). F_p of clear cell RCC was significantly lower ($p < 0.05$) than in papillary RCC and showed a high variability (range 22-495 ml/100ml/min). V_p of clear cell subtypes was also higher, but not significantly than in papillary RCC ($p = 0.06$). There were no significant differences between clear cell and papillary subtypes regarding and F_E and V_E . The two completely necrotic tumors showed very low $R2^*$ (4.4 and 6.1 ms⁻¹) and relatively high ADC (1.82 and 1.72 mm²/s). No relevant perfusion and permeability data could be derived from these tumors due to absent tumor enhancement. No significant correlation between ADC and $R2^*$ ($r = 0.18$) and between ADC and F_p ($r = 0.34$) or V_p ($r = 0.42$) was determined. There was a moderate, but significant correlation ($p < 0.01$) between ADC and V_E ($r = -0.57$). Low $R2^*$ correlated moderately with high F_p ($r = -0.52$) and V_p ($r = -0.73$) (Figure 2). There was no relevant correlation between F_E and ADC ($r = 0.24$) or $R2^*$ ($r = 0.18$) and between V_E and $R2^*$ ($r = 0.20$).

Conclusion: A comprehensive multiparametrical MRI approach comprising DWI, BOLD and DCE-MRI is feasible for assessment of primary RCC. BOLD moderately correlates to perfusion parameters derived from DCE-MRI. ADC shows moderate correlation to the extracellular volume, but does not correlate to tumor oxygenation or perfusion as it provides mixed information on both perfusion and cellularity. Intravoxel incoherent motion analysis may resolve this ambiguity.

References:

1. Wang, H. Radiology. 2010 Oct;257(1):135-43.
2. Sun M.R., Radiology. 2009 Mar;250(3):793-802.
3. Min, J.H., et al., AJR Am J Roentgenol, 2011. 197(3): p. W489-94
3. Baudelet, C. NMR Biomed. 2006 Feb;19(1):69-76

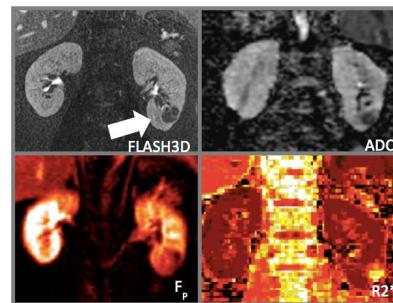


Figure 1: Hypovascularized papillary RCC with high $R2^*$ and low ADC.

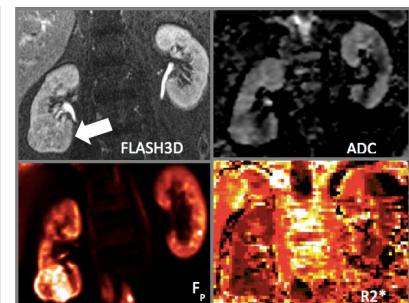


Figure 2: Hypervascularized clear cell RCC with low $R2^*$ and intermediate ADC.

Histology	ADC mm ² /s	R2* ms ⁻¹	F _p ml/100ml/min	V _p ml/100ml	V _E ml/100ml	F _E ml/100ml/min
clear cell n = 12	1.45 ± 0.16	14.2 ± 7.5	189.1 ± 126.4	36.5 ± 23.9	9.2 ± 9.4	3.4 ± 5.4
papillary n = 4	1.28 ± 0.15	21.7 ± 10.9	21.1 ± 16.4	10.01 ± 10.3	9.5 ± 1.7	1.8 ± 0.2
necrotic n = 2	1.76 ± 0.07	5.3 ± 1.2	n/a	n/a	n/a	n/a

Table 1: Overview of the functional MRI parameters.

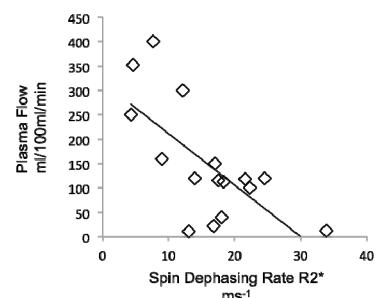


Figure 2: Exemplary Scatter Plot for Plasma Flow/R2* ($r = -0.67$).